时间序列中的多头自注意力机制 (Multi-Head Self-Attention Mechanism) 详细解释及举例
多头自注意力机制是自注意力机制的扩展,通过并行计算多个自注意力层来捕捉更多维度的信息。它能够在不同的子空间中进行注意力计算,从而提高模型的表达能力。
工作原理
1. 输入向量变换为多个查询、键和值矩阵
首先,将输入时间序列 (X) 通过线性变换分别生成多个查询矩阵 (Q)、键矩阵 (K) 和值矩阵 (V)。假设有 (h) 个注意力头,每个头的维度为 (d_k)。
2. 计算每个头的注意力得分
3. 连接所有头的输出
4. 最终线性变换
举例说明
假设我们有一个简单的时间序列数据,表示某个传感器在不同时间步的测量值。我们使用两个注意力头来捕捉各时间步之间的相关性。
输入数据
1. 生成多个查询、键和值矩阵
2. 计算每个头的注意力得分
3. 连接所有头的输出
4. 最终线性变换
具体代码实现
下面是一个具体的Python代码示例,演示如何在时间序列中实现多头自注意力机制:
import numpy as np
def softmax(x):
e_x = np.exp(x - np.max(x, axis=-1, keepdims