扩散模型(Diffusion Models)中的reverse process“(逆向过程)

在扩散模型(Diffusion Models)中,“reverse process”(逆向过程)是指从一个完全噪声化的样本逐步去噪,还原出原始数据的过程。这个过程通常在采样阶段进行。

扩散模型中的逆向过程

扩散过程与逆向过程
  1. 扩散过程(Forward Process)

    • 这是一个将数据逐步添加噪声的过程,形成一系列带噪声的样本。数学上,这个过程可以表示为:
      q ( x t ∣ x t − 1 ) = N ( x t ; 1 − β t x t − 1 , β t I ) q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t} x_{t-1}, \beta_t I) q(xtxt1)=N(xt;1βt xt1,βtI)
      其中, x 0 x_0 x0是原始数据, β t \beta_t βt是时间步 t t t的噪声参数, x t x_t xt是时间步 t t t的带噪声数据。
  2. 逆向过程(Reverse Process)

    • 这是一个从完全噪声化的样本逐步去噪,还原出原始数据的过程。这个过程的目标是从最终的噪声数据 x T x_T xT开始,通过一系列的逆向步骤,得到无噪声的原始数据 x 0 x_0 x0
数学描述

逆向过程通常假设为条件高斯分布:

p θ ( x t − 1 ∣ x t ) = N ( x t − 1 ; μ θ ( x t , t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值