在扩散模型(Diffusion Models)中,“reverse process”(逆向过程)是指从一个完全噪声化的样本逐步去噪,还原出原始数据的过程。这个过程通常在采样阶段进行。
扩散模型中的逆向过程
扩散过程与逆向过程
-
扩散过程(Forward Process):
- 这是一个将数据逐步添加噪声的过程,形成一系列带噪声的样本。数学上,这个过程可以表示为:
q ( x t ∣ x t − 1 ) = N ( x t ; 1 − β t x t − 1 , β t I ) q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t} x_{t-1}, \beta_t I) q(xt∣xt−1)=N(xt;1−βtxt−1,βtI)
其中, x 0 x_0 x0是原始数据, β t \beta_t βt是时间步 t t t的噪声参数, x t x_t xt是时间步 t t t的带噪声数据。
- 这是一个将数据逐步添加噪声的过程,形成一系列带噪声的样本。数学上,这个过程可以表示为:
-
逆向过程(Reverse Process):
- 这是一个从完全噪声化的样本逐步去噪,还原出原始数据的过程。这个过程的目标是从最终的噪声数据 x T x_T xT开始,通过一系列的逆向步骤,得到无噪声的原始数据 x 0 x_0 x0。
数学描述
逆向过程通常假设为条件高斯分布:
p θ ( x t − 1 ∣ x t ) = N ( x t − 1 ; μ θ ( x t , t