结构化状态空间序列模型(S4)的图示解释
这个图示展示了一个选择性状态空间模型(SSM)如何通过硬件感知状态扩展进行运算。以下是对图示的详细解释:
图示各部分解释
1. 输入和隐藏状态
- x t x_t xt:这是当前时间步的输入。
- h t − 1 h_{t-1} ht−1:这是前一个时间步的隐藏状态。
- h t h_t ht:这是当前时间步的隐藏状态。
2. 核心矩阵
-
A A A:状态转移矩阵,描述了状态如何在时间步之间转移。
-
B t B_t Bt:输入矩阵,描述了输入如何影响隐藏状态。注意到这个矩阵是时间依赖的(由输入选择机制决定)。
-
C t C_t Ct:输出矩阵,描述了隐藏状态如何影响输出。这个矩阵同样是时间依赖的。
-
Δ t \Delta_t Δt:离散化参数,用于数值积分过程。
详细解释S4模型中的核心矩阵和参数
核心矩阵是状态空间模型的关键组成部分,它们定义了系统的动态特性和输入输出关系。以下是每个核心矩阵和参数的详细解释:
1. 状态转移矩阵 A A A
- 定义:状态转移矩阵 A A A描述了隐藏状态如何在时间步之间转移。
- 作用:它决定了前一个时间步的状态 h t − 1 h_{t-1} ht−1如何影响当前时间步的状态 h t h_t ht。
- 数学表示:在连续时间系统中,这可以表示为微分方程:
d d t h ( t ) = A h ( t ) \frac{d}{dt} h(t) = A h(t) dtdh(t)=Ah(t)
在离散时间系统中,通常表示为:
h t = A h t − 1 h_t = A h_{t-1} ht=Aht−1 - 性质: A A A通常是一个方阵,其维度为状态空间的大小。它的特性(如特征值和特征向量)决定了系统的动态行为,例如稳定性和响应速度。
2. 输入矩阵 B t B_t Bt
- 定义:输入矩阵 B t B_t Bt描述了输入 x t x_t xt如何影响隐藏状态 h t h_t h