结构化状态空间序列模型(S4)的图示解释

在这里插入图片描述

结构化状态空间序列模型(S4)的图示解释

这个图示展示了一个选择性状态空间模型(SSM)如何通过硬件感知状态扩展进行运算。以下是对图示的详细解释:

图示各部分解释

1. 输入和隐藏状态

  • x t x_t xt:这是当前时间步的输入。
  • h t − 1 h_{t-1} ht1:这是前一个时间步的隐藏状态。
  • h t h_t ht:这是当前时间步的隐藏状态。

2. 核心矩阵

  • A A A:状态转移矩阵,描述了状态如何在时间步之间转移。

  • B t B_t Bt:输入矩阵,描述了输入如何影响隐藏状态。注意到这个矩阵是时间依赖的(由输入选择机制决定)。

  • C t C_t Ct:输出矩阵,描述了隐藏状态如何影响输出。这个矩阵同样是时间依赖的。

  • Δ t \Delta_t Δt:离散化参数,用于数值积分过程。

    详细解释S4模型中的核心矩阵和参数

    核心矩阵是状态空间模型的关键组成部分,它们定义了系统的动态特性和输入输出关系。以下是每个核心矩阵和参数的详细解释:

    1. 状态转移矩阵 A A A
    • 定义:状态转移矩阵 A A A描述了隐藏状态如何在时间步之间转移。
    • 作用:它决定了前一个时间步的状态 h t − 1 h_{t-1} ht1如何影响当前时间步的状态 h t h_t ht
    • 数学表示:在连续时间系统中,这可以表示为微分方程:
      d d t h ( t ) = A h ( t ) \frac{d}{dt} h(t) = A h(t) dtdh(t)=Ah(t)
      在离散时间系统中,通常表示为:
      h t = A h t − 1 h_t = A h_{t-1} ht=Aht1
    • 性质 A A A通常是一个方阵,其维度为状态空间的大小。它的特性(如特征值和特征向量)决定了系统的动态行为,例如稳定性和响应速度。
    2. 输入矩阵 B t B_t Bt
    • 定义:输入矩阵 B t B_t Bt描述了输入 x t x_t xt如何影响隐藏状态 h t h_t h
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值