READ-2321 BaFFLe: Backdoor detection via Feedback-based Federated Learning

论文名称BaFFLe: Backdoor detection via Feedback-based Federated Learning
作者Sebastien Andreina; Giorgia Azzurra Marson; Helen Möllering; Ghassan Karame
来源IEEE ICDCS 2021
领域Machine Learning - Federal learning - Security - Defence – Backdoor attack
问题已有的防御投毒攻击的方法不能与安全聚合兼容,并且无法抵御适应性攻击,或者容易忽略客户端隐私性,或计算量大
方法由客户端验证全局模型是否被嵌入了木马,通过反馈循环投票来决定是否放弃本轮全局模型。为了识别恶意客户端更新,在每个class的基础上进行错误预测,当错误率超出经验阈值时发出警告
创新使用客户端数据的可用性检验全局模型是否中毒

阅读记录

一、攻击模型
  1. 女巫攻击:攻击者同时控制多个恶意客户端
  2. 后门攻击
二、防御手段
  1. 思想
    (1)联合模型验证:让客户端使用自己的隐私数据对全局模型进行验证并反馈给服务器,这称为Feedback loop
    问题:恶意客户端可能会进行恶意反馈
    (2)针对适应性攻击的数据不可预测性:由于不同客户端的数据具有多样性,这使得攻击者难以避免被发现
  2. Feedback loop
    在这里插入图片描述
  • 跨轮次引导信任:Bootstrapping trust across rounds
    ①在固定的测试集上获取全局模型的预测行为,并设置一个拒绝阈值
    ②若预测差距超过拒绝阈值,则认为该模型已中毒,需要被丢弃,将之前的模型当作良性模型
  • 对早期模型放松信任:Relaxing the trust early in model
    在早期训练过程中,全局模型十分不成熟,此时进行的投毒会被快速去除,对全局模型影响较小
  • 反馈回路规格:Feedback loop specification
    ①将参与训练的客户端成为contributor,将参与验证的客户端成为validating client,每个客户端判断模型是否中毒
    ②设置仲裁阈值,若多数客户端接受模型,则接受本轮更新,否则把前一轮的更新作为本轮更新
  • 处理恶意投票:Handling malicious votes
    ①仲裁阈值的选择依赖于系统可以容忍的恶意客户端的数量
    ②在数据分布不均匀的情况下,部分客户端可能无意中提供了全局模型的错误判断,而聚类并选择数量最多的cluster作为良性客户端的防御方法可能无法很好的检测出恶意客户端
    ③根据以上原因,最佳仲裁阈值的范围应该为
    ④根据经验确定仲裁阈值
    在这里插入图片描述
  1. 伪代码
    在这里插入图片描述
二、模型验证
  1. 作用:针对语义后门设计专门的模型验证过程,不同的验证过程可能适合检测不同的攻击
  2. 思想:对比当前全局模型和之前已经接受认为是干净的全局模型
    在这里插入图片描述
  3. 方法
  • 评价指标:错误偏差
    ①已被接受的正确模型和本轮模型将class y错误分类为其他类的差值
    在这里插入图片描述
    ②已被接受的正确模型和本轮模型将其他类错误分类为class y的差值
    在这里插入图片描述

  • 计算评估矩阵
    在这里插入图片描述

  1. 伪代码
    在这里插入图片描述

总结

作者首次提出了联邦验证的概念,由客户端进行训练并验证,通过客户端对模型的投票决定是否保留本轮全局模型。同时,该方法由于不对客户端更新进行分析,可以很好的与安全聚合兼容。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值