参考鹏飞亿里的文章《一文书尽离散化——连续系统离散化原理及应用》
讲离散化方法之前,首先先描述一下离散系统和连续系统
上图为连续信号控制系统框图,R(s)为输入信号,Y(s)为输出信号,E(s)为输入信号与输出信号的偏差信号,U(s)为控制器输出的控制信号,作用于被控对象。
那为什么要对连续信号进行离散化处理呢?
计算获取或产生信号时,不可能每个信号点无缝衔接,即使硬件的性能很好,也只有做到尽可能的接近,而且在获取信号时,如果采样频率过高(如果想要获取的信号更近似于连续信号),更容易引入高频的干扰和噪声。
以上就是离散系统框图。
下面来介绍连续系统离散化的一种方法:数值积分法(分为后向差分法,前向差分法,双线性变换法,输入响应不变法)。离散的原理是通过面积等效,其实就是用曲线下的离散面积来近似代替连续曲线的面积
1.后向差分法;
假设控制器D(s)=U(s)/E(s)=1/s(下面几种方法都是用单位阶跃响应1/s来分析,其他响应分析方法本文章未给出)
用离散面积代替连续信号的面积则:(dU(t)/dt)*T = U(k)-U(k-1) (由于U(t)代表E(t)从0-t的面积和,dU(t)/d(t)代表E(t)的值)
上面式子可转化为E(t)*T=U(k)-U(k-1),式子两边进行z变换E(z)*T = U(z)-U(z)/z
D(z)=U(z)/E(z)=T/(1-1/z),与连续信号下的D(s)=U(s)/E(s)=1/s进行比较
得D(z)=D(s)|s=(1-1/z)/T(即:将D(s)中的s换为(1-1/z)/T得到D(z))
3.双线性变换法
离散信号下连续相连的梯形面积来代替连续信号下的积分
可得:U(k) = U(k-1)+[E(k-1)+E(k)]*T/2
对等式两边同时进行拉式变换得:U(z) = U(z)/z+[E(z)/z+E(z)]*T/2
得:D(z)=U(z)/E(z)=T/2*[(z+1)/(z-1)]
可得D(z)=D(s)|s=2/T*[(z-1)/(z+1)]
4.输入响应不变法(包括脉冲响应不变法和阶跃响应不变法)
4.1脉冲响应不变法:就是要保证在输入信号为脉冲信号时,离散信号下的输出值和连续信号下的输出值相等。
连续信号下, 当输入信号为脉冲信号时,U(s) = E(s)D(s) = D(s) (脉冲信号的拉式变换为1)
离散信号下,当输入信号为脉冲信号时,U(z) = E(z)D(z) = D(z) (脉冲信号的z变换为1,所以E(z)等于1)
由于输出值相等,此时上面两个输出的逆变换相等,也就是D(s)和D(z)是由同一个函数进行拉氏变换和z变换产生的,那么其实就等价于D(z)是由D(s)经过z变换得来的,所以这种方法也称为z变换法
4.2阶跃响应不变法:就是要保证在输入信号为阶跃信号时,离散信号下的输出值和连续信号下的输出值相等。
连续信号下, 当输入信号为阶跃信号时,U(s) = E(s)D(s) = 1/s*D(s) (阶跃信号的拉式变换为1/s)
离散信号下,当输入信号为脉冲信号时,U(z) = E(z)D(z) = z/(z-1)*D(z) (脉冲信号的z变换为z/(z-1))
由于输出值相等,此时上面两个输出的逆变换相等,也就是1/s*D(s) 和z/(z-1)*D(z) 是由同一个函数进行拉氏变换和z变换产生的,那么其实就等价于z/(z-1)*D(z) 是由1/s*D(s) 经过z变换得来的,
即z/(z-1)*D(z) = Z[1/s*D(s)],得:D(z) = [(z-1)/z]*Z[1/s*D(s)]
得:
这个方程的右边可以可以看做D(s)前面加了一个采样器和零阶保持器