连续系统离散化的几种方法

本文详细介绍了连续信号控制系统和离散化的概念,探讨了为何需要对连续信号进行离散化处理,以减少高频干扰和噪声。接着,文章阐述了数值积分法中的后向差分法、前向差分法、双线性变换法以及输入响应不变法,通过这些方法将连续系统转换为离散系统,并分析了各种方法的原理和应用。
摘要由CSDN通过智能技术生成

参考鹏飞亿里的文章《一文书尽离散化——连续系统离散化原理及应用》

讲离散化方法之前,首先先描述一下离散系统和连续系统

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA5bCP5LiR54ix6KGo546w,size_20,color_FFFFFF,t_70,g_se,x_16

上图为连续信号控制系统框图,R(s)为输入信号,Y(s)为输出信号,E(s)为输入信号与输出信号的偏差信号,U(s)为控制器输出的控制信号,作用于被控对象。

那为什么要对连续信号进行离散化处理呢?

计算获取或产生信号时,不可能每个信号点无缝衔接,即使硬件的性能很好,也只有做到尽可能的接近,而且在获取信号时,如果采样频率过高(如果想要获取的信号更近似于连续信号),更容易引入高频的干扰和噪声。

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA5bCP5LiR54ix6KGo546w,size_20,color_FFFFFF,t_70,g_se,x_16

以上就是离散系统框图。
下面来介绍连续系统离散化的一种方法:数值积分法(分为后向差分法,前向差分法,双线性变换法,输入响应不变法)。离散的原理是通过面积等效,其实就是用曲线下的离散面积来近似代替连续曲线的面积

 1.后向差分法;

假设控制器D(s)=U(s)/E(s)=1/s(下面几种方法都是用单位阶跃响应1/s来分析,其他响应分析方法本文章未给出)

用离散面积代替连续信号的面积则:(dU(t)/dt)*T = U(k)-U(k-1)  (由于U(t)代表E(t)从0-t的面积和,dU(t)/d(t)代表E(t)的值)

上面式子可转化为E(t)*T=U(k)-U(k-1),式子两边进行z变换E(z)*T = U(z)-U(z)/z

D(z)=U(z)/E(z)=T/(1-1/z),与连续信号下的D(s)=U(s)/E(s)=1/s进行比较

得D(z)=D(s)|s=(1-1/z)/T(即:将D(s)中的s换为(1-1/z)/T得到D(z))

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA5bCP5LiR54ix6KGo546w,size_17,color_FFFFFF,t_70,g_se,x_16

3.双线性变换法

离散信号下连续相连的梯形面积来代替连续信号下的积分

可得:U(k) = U(k-1)+[E(k-1)+E(k)]*T/2

对等式两边同时进行拉式变换得:U(z) = U(z)/z+[E(z)/z+E(z)]*T/2

得:D(z)=U(z)/E(z)=T/2*[(z+1)/(z-1)]

可得D(z)=D(s)|s=2/T*[(z-1)/(z+1)]

 4.输入响应不变法(包括脉冲响应不变法和阶跃响应不变法)

4.1脉冲响应不变法:就是要保证在输入信号为脉冲信号时,离散信号下的输出值和连续信号下的输出值相等。

连续信号下, 当输入信号为脉冲信号时,U(s) = E(s)D(s) = D(s)   (脉冲信号的拉式变换为1)

离散信号下,当输入信号为脉冲信号时,U(z) = E(z)D(z) = D(z)    (脉冲信号的z变换为1,所以E(z)等于1)

由于输出值相等,此时上面两个输出的逆变换相等,也就是D(s)和D(z)是由同一个函数进行拉氏变换和z变换产生的,那么其实就等价于D(z)是由D(s)经过z变换得来的,所以这种方法也称为z变换法

4.2阶跃响应不变法:就是要保证在输入信号为阶跃信号时,离散信号下的输出值和连续信号下的输出值相等。

连续信号下, 当输入信号为阶跃信号时,U(s) = E(s)D(s) = 1/s*D(s)   (阶跃信号的拉式变换为1/s)

离散信号下,当输入信号为脉冲信号时,U(z) = E(z)D(z) = z/(z-1)*D(z)    (脉冲信号的z变换为z/(z-1))

由于输出值相等,此时上面两个输出的逆变换相等,也就是1/s*D(s) 和z/(z-1)*D(z) 是由同一个函数进行拉氏变换和z变换产生的,那么其实就等价于z/(z-1)*D(z) 是由1/s*D(s) 经过z变换得来的,

即z/(z-1)*D(z) = Z[1/s*D(s)],得:D(z) = [(z-1)/z]*Z[1/s*D(s)] 

得:

这个方程的右边可以可以看做D(s)前面加了一个采样器和零阶保持器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小丑爱表现

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值