1. 引言
建筑外墙裂缝是建筑物长期使用过程中常见的现象,裂缝不仅影响建筑外观,还可能影响建筑物的结构安全性。传统的裂缝检测通常依赖人工检查和目视评估,耗时且容易出现误差。随着计算机视觉技术的飞速发展,基于深度学习的裂缝检测成为了一个有效的解决方案。
NanoDet是一种轻量级、高效的目标检测模型,专为实时应用而设计。与传统的深度学习目标检测模型相比,NanoDet具有较小的模型体积和更快的推理速度,非常适合嵌入式设备和低功耗设备的实时推理。本文将详细介绍如何基于NanoDet构建一个建筑外墙裂缝监控系统,利用深度学习技术实时监测建筑外墙的裂缝。
本文将从数据集的构建、模型训练与推理、UI界面的设计等多个方面进行详细讲解,并提供完整的代码实现,帮助读者理解并实现这一目标检测任务。
目录
2. 系统架构
本系统的整体架构分为以下几个模块:
- 数据集构建:收集包含建筑外墙裂缝的图像数据,并进行标注,构建训练数据集。
- 模型训练与推理:使用NanoDet进行目标检测,检测裂缝的位置和大小。