目录
- 引言
- 项目目标
- YOLO简介
- 数据集准备与处理
- YOLOv5、YOLOv8、YOLOv10模型介绍与训练
- 实现车辆碰撞检测系统
- UI界面设计与实现
- 结果评估与优化
- 持续改进与未来发展
- 结论
- 完整代码实现
1. 引言
随着自动驾驶技术的发展,车载监控系统在提升驾驶安全性方面发挥了重要作用。特别是,能够及时检测车祸中的物体、车辆碰撞等现象并快速反应的系统,不仅能够有效地保护驾驶员,还能为自动驾驶系统提供实时的决策依据。深度学习技术,特别是目标检测技术,已经广泛应用于该领域。
YOLO(You Only Look Once)系列模型,凭借其出色的速度与精度,成为目标检测任务中的佼佼者。本项目将基于YOLOv5、YOLOv8、YOLOv10等深度学习模型,开发一个车辆碰撞检测系统,用于在车祸发生时,快速识别图像中的障碍物(如其他车辆、行人、障碍物等)并做出反应。
2. 项目目标
本项目的目标是使用YOLO系列模型(YOLOv5、YOLOv8、YOLOv10)进行车辆碰撞检测,系统将能够:
-
<