随着人工智能技术的快速发展,深度学习在各个领域得到了广泛的应用,尤其是在农业领域。植物病害识别是现代农业中非常重要的一环,传统的人工识别方法不仅费时费力,而且存在很大的主观性。借助深度学习技术,特别是卷积神经网络(CNN),我们能够有效地进行植物病害的自动化识别。而YOLO(You Only Look Once)算法作为一种经典的目标检测算法,在实时检测领域表现出了巨大的优势。
本篇博客将基于深度学习YOLOv10模型,构建一个用于植物叶片病害识别的系统。系统将使用Python、PySide6来开发图形界面,结合YOLOv10进行目标检测。我们将从数据集准备、模型训练到界面开发,逐步介绍整个流程,并提供相应的完整代码。
目录
- 背景与目标
- YOLOv10简介
- 植物叶片病害识别数据集
- YOLOv10模型训练
- PySide6界面开发
- 完整代码实现
- 系统测试与评估
- 总结与展望