1. 项目背景与意义
随着自动驾驶技术和智能交通系统的不断发展,如何提高交通场景中目标检测的精度与实时性成为研究的重点。目标检测技术广泛应用于智能驾驶、行人检测、车辆识别等任务,对于构建安全高效的交通系统至关重要。Cityscapes数据集作为智能交通领域最常用的数据集之一,涵盖了多种交通场景中的不同目标,包括行人、车辆、自行车、建筑物等。通过使用YOLOv10结合Cityscapes数据集,可以实现高效且精确的目标检测。
本项目旨在使用YOLOv10模型对Cityscapes数据集进行目标检测,并结合PyQt5设计一个UI界面,展示实时目标检测结果。通过这个项目,我们可以探索YOLOv10在复杂交通场景中的表现,以及如何实现基于摄像头的视频流实时检测。
2. Cityscapes 数据集概述
2.1 数据集介绍
Cityscapes 数据集是一个用于城市街景图像分析的公共数据集,旨在推动城市环境中的视觉理解。Cityscapes 数据集包含了多种城市环境中的高质量图像,适用于多种计算机视觉任务,包括语义分割、实例分割、目标检测等。
Cityscapes数据集的图像分辨率为2048x1024,图像中的目标包括行人、车辆、自行车等多个类别。数据集中的标注信息包括像素级别的标签以及物体实例的边界框,适合进行目标检测与实例分割任务。<