1. 引言
随着计算机视觉技术的迅猛发展,目标检测成为了一个关键的研究领域。目标检测技术在多个行业中得到了广泛应用,尤其在自动驾驶、安防监控和人工智能领域中有着重要的地位。目标检测的核心任务是从图像或视频流中检测并分类出各类目标。
在众多目标检测算法中,YOLO(You Only Look Once)系列由于其高效性和准确性,成为了目前最受欢迎的目标检测方法之一。YOLOv5是YOLO系列的最新版本,结合了更为高效的卷积神经网络(CNN)架构和更精细的检测算法,在目标检测任务中表现出色。
本博客将深入探讨如何使用YOLOv5模型对SUN2012数据集进行目标检测,并结合PyQt5实现一个UI界面来展示实时检测结果。
2. SUN2012数据集概述
SUN2012(Scene Understanding Dataset 2012)是一个广泛使用的多类目标检测数据集,由斯坦福大学推出。该数据集包含了397个不同的场景类别,涵盖了户外、室内、运动、节日、建筑、人物等多种复杂的类别。由于其类别的丰富性和多样性,SUN2012被广泛用于目标检测、场景理解以及其他计算机视觉任务的研究。
- 数据集大小:包含130,000多张标注图像。