1. 引言
在当前的视频监控、安防系统中,人脸识别和追踪技术发挥着越来越重要的作用。通过在重要区域进行人脸追踪,能够有效地提高安防水平,尤其在公共场所、商业区域和机场等关键场所。基于深度学习的目标检测技术,尤其是YOLO(You Only Look Once)系列模型,在实时目标检测领域取得了显著成果,其中YOLOv8作为该系列的最新版本,凭借其较高的检测精度和速度,成为实现高效人脸追踪系统的理想选择。
本文将详细介绍如何基于YOLOv8模型和UI界面,设计和实现一个“重要区域人脸追踪系统”。该系统可以自动识别并追踪特定区域内的人脸,结合UI界面实时展示视频流、追踪框及识别结果,从而实现高效、精准的人脸监控。
2. 系统目标与挑战
2.1 系统目标
本系统旨在通过YOLOv8模型进行人脸追踪,具体功能包括:
- 人脸识别:能够检测并识别视频流中的人脸。
- 重要区域追踪:在人群中识别并追踪位于指定重要区域内的人脸。
- 实时视频处理:通过UI界面展示实时视频,并在视频流