引言
随着电子商务的迅猛发展,消费者对在线购物体验的要求日益提高。传统的在线购物方式无法提供试穿体验,导致高退货率和客户满意度下降。虚拟试衣间技术应运而生,旨在通过计算机视觉和深度学习技术,为用户提供沉浸式的试穿体验。本文提出了一种基于 YOLOv10 的虚拟试衣间系统,结合人体尺寸检测和服装匹配,实现个性化的虚拟试穿功能。
系统架构概述
本系统主要包括以下模块:
- 人体检测与尺寸估计模块:基于 YOLOv10 模型,实时检测用户的身体部位,并估计关键尺寸。
- 服装匹配模块:根据用户的身体尺寸,从服装数据库中筛选合适的服装。
- 虚拟试穿模块:将选定的服装图像与用户图像进行合成,生成试穿效果图。
- 用户界面(UI)模块:提供友好的操作界面,支持用户上传照片、选择服装、查看试穿效果等功能。
数据集选择与处理
为了训练和评估系统,我们选择了以下数据集:
- DeepFashion2:包含多种服装类别和人体姿态的图像,适用于人体