随着农业现代化的发展,温室种植在提高作物产量和质量方面发挥了重要作用。然而,传统的人工监测方法效率低下,且易受人为因素影响。为了实现对温室内植物生长状态的实时、准确监测,本文提出了一种基于YOLOv8的温室植物生长状态监测系统——GreenhousePlantMonitor。该系统结合了深度学习目标检测技术和图形用户界面(GUI),实现了对植物生长状态的自动识别和可视化展示。
一、项目概述
1.1 项目背景
在温室种植中,植物的生长状态直接影响到作物的产量和质量。传统的监测方法主要依赖人工观察,不仅耗时耗力,而且容易出现误判。因此,亟需引入自动化、智能化的技术手段,实现对植物生长状态的实时监测和分析。
1.2 项目目标
- 构建一个基于YOLOv8的目标检测模型,能够实时识别温室内植物的生长状态。
- 开发一个用户友好的GUI界面,方便操作人员进行监控和控制。
- 集成模型与GUI,实现植物生长状态的智能化管理。
二、数据集准备
2.1 数据集收集
为了训练和评估模型,需要收集包含不同生长阶段的植物图像数据。数据来源包括&#x