1. 引言
随着智能交通系统的发展,车辆检测作为交通监控、流量统计和智能管理的关键环节,受到了广泛关注。车辆种类多样,实时检测和统计车辆数量对于道路安全与交通管理至关重要。近年来,基于深度学习的目标检测技术发展迅速,YOLO系列模型以其高效准确的特点成为检测任务中的热门选择。本文以最新的YOLOv8为核心,结合用户友好的图形界面,实现道路车辆的检测与实时统计,支持汽车、摩托车等多类车辆识别。
本文详细介绍了整个系统的设计、数据准备、训练、推理和UI界面实现过程,并附上完整代码,适合深度学习初学者和工程实践者学习参考。
2. 车辆检测背景与意义
2.1 车辆检测的应用场景
- 交通流量统计:实时统计不同类型车辆数量,为城市交通规划提供数据支持
- 智能交通信号控制:根据车流量自动调节信号灯时长
- 道路安全监控:识别交通违规行为,提高交通安全
- 自动驾驶辅助:环境感知关键环节,支持车辆避障与路径规划
2.2 传统车辆检测技术存在的不足
传统基于人工特征(