1. 引言
车牌识别技术作为智能交通系统的重要组成部分,广泛应用于交通管理、车辆监控、停车收费等场景。车牌识别系统一般包含两个关键步骤:车牌定位和车牌字符识别。
近年来,随着深度学习技术的发展,基于卷积神经网络(CNN)的目标检测算法,尤其是YOLO系列模型,以其高精度和实时性,成为车牌检测的主流方法。YOLOv8作为YOLO家族的最新一代,进一步提升了检测性能和推理速度。
本文将系统讲解如何基于YOLOv8构建一个完整的车牌检测与识别系统,并通过Python实现一个简洁的UI界面,便于用户交互使用。
2. 车牌识别与定位技术背景
2.1 传统方法
传统车牌识别多依赖图像处理技术,先通过颜色、边缘、形态学等方法实现车牌区域定位,再结合OCR技术识别字符。这些方法对光照变化、角度倾斜、背景复杂性敏感,鲁棒性较差。
2.2 深度学习方法
深度学习方法利用CNN强大的特征提取能力,直接学习车牌特征,实现端到端的车牌检测和识别。主要分为:
- 两阶段方法:先用目标检测算法定位车牌区域,再用OCR模型识别车牌字符。