1. 背景介绍与任务定义
在现代农业中,自动化水果采摘是智能农业发展的重要方向。传统的人工采摘不仅效率低且劳动强度大,受天气、季节影响显著。借助计算机视觉和深度学习技术,实现水果的自动识别和定位,可以为机械手臂等自动采摘设备提供准确的采摘目标,提高农业自动化水平。
本博客聚焦于基于YOLOv8模型的水果目标检测,旨在实现一个高效、准确的水果识别系统,并通过图形化界面实现模型推理结果的实时展示,方便用户操作与检测效果验证。
目标水果包括:苹果、香蕉、橙子等常见水果。用户可以根据自己的需求扩展更多类别。
2. YOLOv8简介
YOLO(You Only Look Once)系列模型是目标检测领域广泛使用的单阶段检测网络。相比传统的多阶段检测器,YOLO具备端到端训练、高效推理速度、较好精度的优势,适合实时应用场景。
2023年,YOLOv8发布,带来了更轻量化的模型结构和更好的检测精度,同时其官方库ultralytics提供了极为方便的训练、推理接口。
YOLOv8的核心优势:
- 更快的推理速度
- 模型更小,便于边缘设备部署
- 支持多任务学习(检测、分割、分类)
- 开箱即用ÿ