回顾:半导体是一种自身性质容易受到外界影响的物质,半导体的导电能力会随着外界因素变化而显著变化,载流子的浓度和运动能力的强弱是两个关键因素,影响导电能力
因为电子空穴是大量的微观电子,用统计的方法,分布函数来计算
T一定并且没有外加因素的情况下,载流子的来源
(1)价带底的电子可以跃迁,价带电子跃迁到导带,称为导带中的导电电子(这个就是所谓的本征激发)这个过程的相反过程同时存在,这是导电电子的一种来源
(2)电子也可以来源于施主杂质的电离,这个过程的相反过程也同时存在
=》可以达到一种动态的平衡,导带的电子浓度,价带的空穴浓度
称为热平衡态
第三章我们要解决两个问题
(1)怎么计算导带的电子浓度和价带的空穴浓度
(2)解决温度变化时的半导体中的载流子浓度的变化规律
要计算导带的电子浓度,导带是能量允许区间,我们可以认为能带是准连续的
单位能量间隔里面有多少电子可以呆的地方,这些可以呆的地方也不一定全部排满,能量越高,占据的可能性越小
怎么计算导带的电子浓度
和价带的空穴浓度
先解决有多少可以呆的地方?
单位能量间隔有多少量子态数?
状态密度:由于导带和价带是准连续的,因此定义单位能量间隔内的量子态数为状态密度
,为了求出状态密度,我们按照这么几个步骤来求
1.求出K空间的量子态密度
2.求能量为E的等能面在K空间所围成的体积
3.(1)*(2)就是等能面里面所围的量子态数
K空间的取值,波矢K的取值只能这么取,波矢k的取值在K空间均匀分布
每个允许的k值,在k空间所占的体积
所以K空间量子态密度,考虑到自旋所以就是
球形等能面各向同性,
,体积
求导带的状态密度,体积
按照定义求微分,
对硅和锗,电子的各向异性,此时算体积的时候就不一样了
构成了旋转椭球等能面
,有效质量是各向异性,并且极值点不在中心
写成椭球的标准方程
体积=
这样的旋转椭球共有s个,s=6是硅,s=4是锗
我们把体积和量子态密度一乘
在微分一下,
如果此时的有效质量称为导带电子状态密度有效质量
价带状态密度,用下标
称为价带空穴状态密度有限质量
费米能级和载流子的统计分布
费米分布函数,电子按照能量分布的规律,一个按照能量为E的独立电子态,被一个电子占据的几率是这么大的几率(备注:所谓独立电子态是指不论该电子状态被电子占据与否,均不影响其他影响的占据情况)
分布函数有几个量注意一下,称作费米能级,用电中性条件求得,费米能级有确定的物理意义,在这个表达式里面有一个
,玻尔兹曼常数,我们还有后面一项
,这个T是绝对温度
T在300k下,
我们简单的讨论一下,
1 在费米分布函数里面,若
,
,若
,
费米能级是电子填充能量水平的分界线 ,即
的能级上,都被电子所占据,而
的能级上,都是空的,所以温度很低的时候,费米能级标志了填充情况
2.任意温度下,费米构造的这个分布函数,若若,这个时候
,而电子占据的某个能量状态比费米能级低的话,
,若
,
,若
,
,若
,
若T不高,温度不高,玻尔兹曼常数不大,10个k0T就不是很大,意思就是说,带状近似成一条线,与0K的时候是相差不大的,温度不太高,区间就趋向于费米能级,费米能级仍然是一条分界线
温度不太高的时候,费米能级仍然是电子填充水平的标志,比费米能级高的能级基本上是空的,而比费米能级低的能级上基本上都是满的
有两个半导体,一个半导体的费米能级在,另一个在
,如果
,那么第一个的平均电子能量大于第二个
玻尔兹曼分布函数
费米分布函数是近代分布函数,并且受到泡利不相容原理的制约
而玻尔兹曼是经典分布,并且它不限制被多少电子来占据,近代或者现代的理论
经典理论是现代理论的一个极端情况
在费米分布函数中,若,则
,这个就是玻尔兹曼分布
这个分布不受泡利不相容原理的制约,为什么满足上述条件,就可以不受泡利不相容制约?
电子占据的能量状态远高于费米能级,费米能级是电子填充水平的标志,那么这个能级上几乎就没有电子,此时限制自旋就没有任何意义了,费米能级的1反应的是泡利不相容的因素
这样的话,我们就把电子占据的几率问题就解决了
一个能量为的独立电子态,被空穴占据的几率,首先空穴是价带剩余的大量电子的等效描述
所谓的价带空穴是电子跃迁走,留下的空的状态
就是不被电子占据的几率
,
如果,
,大家注意,空穴能量是在负的方向增加的,这个就是空穴的玻尔兹曼分布
分布函数和状态密度都解决了,我们就可以算电子和空穴的数量了
一般费米能级的位置位于禁带,并且与导带底和价带顶的距离,电子和空穴都是服从玻尔兹曼分布,呈现指数衰减,费米分布函数是最一般的情况,涵盖玻尔兹曼统计分布,一般来说是服从玻尔兹曼分布的,用玻尔兹曼分布来统计载流子的浓度和数量会更加直观
通常把服从玻尔兹曼分布的半导体,称为非简并半导体,而把服从费米分布的半导体,称为简并半导体
这里说的简并和非简并值的是服从何种分布