半导体中载流子的统计分布

回顾:半导体是一种自身性质容易受到外界影响的物质,半导体的导电能力会随着外界因素变化而显著变化,载流子的浓度和运动能力的强弱是两个关键因素,影响导电能力

因为电子空穴是大量的微观电子,用统计的方法,分布函数来计算


T一定并且没有外加因素的情况下,载流子的来源

(1)价带底的电子可以跃迁,价带电子跃迁到导带,称为导带中的导电电子(这个就是所谓的本征激发)这个过程的相反过程同时存在,这是导电电子的一种来源

(2)电子也可以来源于施主杂质的电离,这个过程的相反过程也同时存在

=》可以达到一种动态的平衡,导带的电子浓度n_0,价带的空穴浓度p_0称为热平衡态

 第三章我们要解决两个问题

(1)怎么计算导带的电子浓度n_0和价带的空穴浓度p_0

(2)解决温度变化时的半导体中的载流子浓度的变化规律

要计算导带的电子浓度,导带是能量允许区间,我们可以认为能带是准连续的

单位能量间隔里面有多少电子可以呆的地方,这些可以呆的地方也不一定全部排满,能量越高,占据的可能性越小

 怎么计算导带的电子浓度n_0和价带的空穴浓度p_0

先解决有多少可以呆的地方?

单位能量间隔有多少量子态数? 

状态密度:由于导带和价带是准连续的,因此定义单位能量间隔内的量子态数为状态密度

\small g(E)=\frac{dZ}{dE},为了求出状态密度,我们按照这么几个步骤来求

1.求出K空间的量子态密度

2.求能量为E的等能面在K空间所围成的体积

3.(1)*(2)就是等能面里面所围的量子态数

K空间的取值\small k_x=\frac{n_x}{L_1},k_y=\frac{n_y}{L_2},k_z=\frac{n_z}{L_3},波矢K的取值只能这么取,波矢k的取值在K空间均匀分布

每个允许的k值,在k空间所占的体积\small =\frac{1}{L_1 \times L_2 \times L_3 }=\frac{1}{V}

所以K空间量子态密度\small =\frac{1}{\frac{1}{V}}=V,考虑到自旋所以就是\small 2V

球形等能面\small m_n^*各向同性,\small E-E_c=\frac{h^2}{2m_n^*}(k_x^2+k_y^2+k_z^2),体积\small =\frac{4}{3}\pi k^3=\frac{4}{3} \pi \frac{(2m_n^*)^{\frac{3}{2}}}{h^3}(E-E_c)^{\frac{3}{2}}

求导带的状态密度,\small Z(E)=2V \times体积\small =2V \cdot \frac{4}{3} \pi \frac{(2m_n^*)^{\frac{3}{2}}}{h^3}(E-E_c)^{\frac{3}{2}}

按照定义求微分,\small g_{c}(E)=\frac{4 \pi V}{h^3}(2m_n^*)^{\frac{3}{2}}(E-E_c)^{\frac{1}{2}}

对硅和锗,电子的\small m_n^*各向异性,此时算体积的时候就不一样了

构成了旋转椭球等能面

\small E-E_c=\frac{h^2}{2}[\frac{(k_x-k_{0x})^2}{m_x^*}+\frac{(k_y-k_{0y})^2}{m_y^*}+\frac{(k_z-k_{0z})^2}{m_z^*}],有效质量是各向异性,并且极值点不在中心

写成椭球的标准方程

\small \frac{k_1^2}{\frac{2m_t}{h^2}(E-E_c)}+\frac{k_2^2}{\frac{2m_t}{h^2}(E-E_c)}+\frac{k_3^2}{\frac{2m_l}{h^2}(E-E_c)}=1

体积=\small \frac{4}{3} \pi abc=\frac{4}{3} \pi \frac{2m_t(2m_l)^{\frac{1}{2}}}{h^3}(E-E_c)^{\frac{3}{2}}

这样的旋转椭球共有s个,s=6是硅,s=4是锗

我们把体积和量子态密度一乘\small Z(E)=2VS\frac{4}{3} \pi \frac{2m_t(2m_l)^{\frac{1}{2}}}{h^3}(E-E_c)^{\frac{3}{2}}

在微分一下,\small g_{c}(E)=\frac{dZ}{dE}=\frac{4 \pi V}{h^3} 2Sm_t(2m_l)^{\frac{1}{2}}(E-E_c)^{\frac{1}{2}}

如果\small (2m_n^*)^{\frac{3}{2}}=2Sm_t(2m_l)^{\frac{1}{2}} \\ ->m_n^*=(S^2m_t^2m_l)^{\frac{1}{3}}此时的有效质量称为导带电子状态密度有效质量

价带状态密度,用下标\small g_{v}(E)=\frac{4 \pi V}{h^3}(2m_p^*)^{\frac{3}{2}}(E_v-E)^{\frac{1}{2}},m_p^*=[(m_{ph})^{\frac{3}{2}}+(m_{pl})^{\frac{3}{2}}]^{\frac{2}{3}}

\small m_p^*价带空穴状态密度有限质量

费米能级和载流子的统计分布

费米分布函数,电子按照能量分布的规律,一个按照能量为E的独立电子态,被一个电子占据的几率是\small f(E)=\frac{1}{1+exp(\frac{E-E_F}{k_0t})}这么大的几率(备注:所谓独立电子态是指不论该电子状态被电子占据与否,均不影响其他影响的占据情况)

分布函数有几个量注意一下,\small E_F称作费米能级,用电中性条件求得,费米能级有确定的物理意义,在这个表达式里面有一个\small K_0,玻尔兹曼常数,我们还有后面一项\small T,这个T是绝对温度

T在300k下,\small k_0T=0.026ev

我们简单的讨论一下,

1 在费米分布函数里面\small T->0k,若\small E>E_F\small f(E)=0,若\small E<E_F\small f(E)=1

\small T->0 k费米能级是电子填充能量水平的分界线 ,即\small E<E_F的能级上,都被电子所占据,而\small E>E_F的能级上,都是空的,所以温度很低的时候,费米能级标志了填充情况

2.任意温度下,费米构造的这个分布函数,若若\small E>E_F,这个时候\small f(E)<\frac{1}{2},而电子占据的某个能量状态比费米能级低的话,\small f(E)>\frac{1}{2},若\small E=E_F\small f(E_F)=\frac{1}{2}​​​​​​​,若\small E=E_F+5K_0T,\small f(E_F+5K_0T)=\frac{1}{1+e^5}=0.7%,若\small E_F=E_F-5K_0T\small f(E_F-5K_0T)=\frac{1}{1+e^{-5}}=99.3%

若T不高,温度不高,玻尔兹曼常数\small k_0T不大,10个k0T就不是很大,意思就是说,带状近似成一条线,与0K的时候是相差不大的,温度不太高,区间就趋向于费米能级,费米能级仍然是一条分界线

温度不太高的时候,费米能级\small E_F仍然是电子填充水平的标志,比费米能级高的能级基本上是空的,而比费米能级低的能级上基本上都是满的

有两个半导体,一个半导体的费米能级在\small E_{F1},另一个在\small E_{F2},如果\small E_{F1}>E_{F2},那么第一个的平均电子能量大于第二个

玻尔兹曼分布函数

费米分布函数是近代分布函数,并且受到泡利不相容原理的制约

而玻尔兹曼是经典分布,并且它不限制被多少电子来占据,近代或者现代的理论

经典理论是现代理论的一个极端情况

在费米分布函数中,若\small E-E_F>>k_0T,则\small f(E)=\frac{1}{1+exp(\frac{E-E_F}{k_0T})}=exp(-\frac{E-E_F}{k_0T})=Ae^{-\frac{E}{k_0T}},这个就是玻尔兹曼分布

这个分布不受泡利不相容原理的制约,为什么满足上述条件,就可以不受泡利不相容制约?

电子占据的能量状态远高于费米能级,费米能级是电子填充水平的标志,那么这个能级上几乎就没有电子,此时限制自旋就没有任何意义了,费米能级的1反应的是泡利不相容的因素

这样的话,我们就把电子占据的几率问题就解决了

一个能量为\small E的独立电子态,被空穴占据的几率,首先空穴是价带剩余的大量电子的等效描述

所谓的价带空穴是电子跃迁走,留下的空的状态

\small 1-f(E)就是不被电子占据的几率\small =1-\frac{1}{1+exp(\frac{E-E_F}{k_0T})}=\frac{1}{1+exp(-\frac{E-E_F}{k_0T})},

如果\small E_F-E>>k_0T,\small =Be^{\frac{E}{k_0T}},大家注意,空穴能量是在负的方向增加的,这个就是空穴的玻尔兹曼分布

分布函数和状态密度都解决了,我们就可以算电子和空穴的数量了

一般费米能级的位置位于禁带,并且与导带底和价带顶的距离\small >>k_0T,电子和空穴都是服从玻尔兹曼分布,呈现指数衰减,费米分布函数是最一般的情况,涵盖玻尔兹曼统计分布,一般来说是服从玻尔兹曼分布的,用玻尔兹曼分布来统计载流子的浓度和数量会更加直观

通常把服从玻尔兹曼分布的半导体,称为非简并半导体,而把服从费米分布的半导体,称为简并半导体

这里说的简并和非简并值的是服从何种分布​​​​​​​​​​​​​​

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉月松心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值