弹簧悬吊子系统模型推导
弹簧悬吊系统是一种在刚性轻绳末端串联弹簧的悬吊系统。现有的文献大多考虑不含弹簧的悬吊系统(吊车等),少数考虑弹簧悬吊的文献模型建立则不够清晰,因此,有必要自己从基本定理建立一个弹簧悬吊系统,用于后续的仿真实验。
已有的悬吊系统大多采用Lagrange建模方法,该方法不考虑系统内部的约束力,而是直接从能量角度出发建立模型。可见,在悬吊系统中使用该方法建模优于使用牛顿法。本文同样使用Lagrange方法建立了弹簧悬吊子系统的模型。
坐标系和符号定义
x o x_o xo、 y o y_o yo:吊绳上端的坐标,正方向见参考系设定;时变量;
x p x_p xp、 y p y_p yp:吊绳负载的坐标,正方向见参考系设定;时变量;
l l l:绳子的绳长,此处认为绳子轻质;当绳子可延长时为时变量;
θ \theta θ:吊绳与竖直方向的夹角,取逆时针方向为正;时变量;
k k k:弹簧刚度;常量;
u u u:弹簧伸长量;时变量;
m m m:负载质量;常量
拉格朗日方程
首先写出拉格朗日方程的一般形式:
d
d
t
∂
L
∂
q
˙
−
∂
L
∂
q
=
0
\frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial L}{\partial \dot q}-\frac{\partial L}{\partial q} = 0
dtd∂q˙∂L−∂q∂L=0
其中
q
q
q是广义坐标,
t
t
t是时间;
L
L
L是拉格朗日函数,构造方式如下:
L
=
T
−
V
L = T-V
L=T−V
T
T
T是系统动能,
V
V
V是系统势能。
能量项
T = m 2 ( x ˙ p 2 + y ˙ p 2 ) T = \frac{m}{2}(\dot x_p^2+\dot y_p^2) T=2m(x˙p2+y˙p2)
取
x
x
x轴所在线为零势能线,则有
V
=
1
2
k
u
2
+
m
g
(
−
y
p
)
V = \frac{1}{2}ku^2+mg(-y_p)
V=21ku2+mg(−yp)
几何关系
考虑绳全程绷直,有:
x
p
=
x
o
+
(
l
+
u
)
sin
θ
y
p
=
y
o
+
(
l
+
u
)
cos
θ
x_p = x_o+(l+u)\sin\theta \\ y_p = y_o+(l+u)\cos\theta
xp=xo+(l+u)sinθyp=yo+(l+u)cosθ
两边对时间求导得到速度关系:
x
˙
p
=
x
˙
o
+
(
l
˙
+
u
˙
)
sin
θ
+
(
l
+
u
)
θ
˙
cos
θ
y
˙
p
=
y
˙
o
+
(
l
˙
+
u
˙
)
cos
θ
−
(
l
+
u
)
θ
˙
sin
θ
\dot x_p =\dot x_o+(\dot l+\dot u)\sin\theta +(l+u)\dot\theta \cos\theta\\ \dot y_p =\dot y_o+(\dot l+\dot u)\cos\theta -(l+u)\dot\theta \sin\theta
x˙p=x˙o+(l˙+u˙)sinθ+(l+u)θ˙cosθy˙p=y˙o+(l˙+u˙)cosθ−(l+u)θ˙sinθ
继续对时间求导得到加速度关系:
x
¨
p
=
x
¨
o
+
(
l
¨
+
u
¨
)
sin
θ
+
2
(
l
˙
+
u
˙
)
θ
˙
cos
θ
+
(
l
+
u
)
θ
¨
cos
θ
−
(
l
+
u
)
θ
˙
2
sin
θ
y
¨
p
=
y
¨
o
+
(
l
¨
+
u
¨
)
cos
θ
−
2
(
l
˙
+
u
˙
)
θ
˙
sin
θ
−
(
l
+
u
)
θ
¨
sin
θ
−
(
l
+
u
)
θ
˙
2
cos
θ
\ddot x_p =\ddot x_o+(\ddot l+\ddot u)\sin\theta +2(\dot l+\dot u)\dot\theta \cos\theta +(l+u)\ddot\theta \cos\theta -(l+u)\dot\theta^2 \sin\theta\\ \ddot y_p =\ddot y_o+(\ddot l+\ddot u)\cos\theta -2(\dot l+\dot u)\dot\theta \sin\theta -(l+u)\ddot\theta \sin\theta -(l+u)\dot\theta^2 \cos\theta
x¨p=x¨o+(l¨+u¨)sinθ+2(l˙+u˙)θ˙cosθ+(l+u)θ¨cosθ−(l+u)θ˙2sinθy¨p=y¨o+(l¨+u¨)cosθ−2(l˙+u˙)θ˙sinθ−(l+u)θ¨sinθ−(l+u)θ˙2cosθ
代入计算
取两个广义坐标 u u u、 θ \theta θ,则拉格朗日函数各项计算如下。
首先计算动能项对两个广义坐标速率的偏导:
∂
T
∂
u
˙
=
∂
T
∂
x
˙
p
∂
x
˙
p
∂
u
˙
+
∂
T
∂
y
˙
p
∂
y
˙
p
∂
u
˙
∂
T
∂
θ
˙
=
∂
T
∂
x
˙
p
∂
x
˙
p
∂
θ
˙
+
∂
T
∂
y
˙
p
∂
y
˙
p
∂
θ
˙
\begin{align*} \frac{\partial T}{\partial\dot{u}} = \frac{\partial T}{\partial\dot x_p} \frac{\partial\dot x_p}{\partial \dot u} +\frac{\partial T}{\partial\dot y_p} \frac{\partial\dot y_p}{\partial \dot u}\\ \frac{\partial T}{\partial\dot{\theta}} = \frac{\partial T}{\partial\dot x_p} \frac{\partial\dot x_p}{\partial \dot \theta} +\frac{\partial T}{\partial\dot y_p} \frac{\partial\dot y_p}{\partial \dot \theta} \end{align*}
∂u˙∂T=∂x˙p∂T∂u˙∂x˙p+∂y˙p∂T∂u˙∂y˙p∂θ˙∂T=∂x˙p∂T∂θ˙∂x˙p+∂y˙p∂T∂θ˙∂y˙p
右边的各项代入后计算得到:
∂
T
∂
u
˙
=
m
2
⋅
2
x
˙
p
sin
θ
+
m
2
⋅
2
y
˙
p
cos
θ
∂
T
∂
θ
˙
=
m
2
⋅
2
x
˙
p
(
l
+
u
)
cos
θ
−
m
2
⋅
2
y
˙
p
(
l
+
u
)
sin
θ
\begin{align*} \frac{\partial T}{\partial\dot{u}} =&\frac{m}{2}\cdot 2\dot x_p\sin\theta +\frac{m}{2}\cdot 2\dot y_p\cos\theta \\ \frac{\partial T}{\partial\dot{\theta}} = &\frac{m}{2}\cdot 2\dot x_p(l+u)\cos\theta - \frac{m}{2}\cdot 2\dot y_p(l+u)\sin\theta \end{align*}
∂u˙∂T=∂θ˙∂T=2m⋅2x˙psinθ+2m⋅2y˙pcosθ2m⋅2x˙p(l+u)cosθ−2m⋅2y˙p(l+u)sinθ
涉及到
x
p
x_p
xp等部分暂时不打开。
接着计算势能项对两个广义坐标速率的偏导:
∂
V
∂
u
˙
=
0
∂
V
∂
θ
˙
=
0
\begin{align*} \frac{\partial V}{\partial\dot{u}} =&0 \\ \frac{\partial V}{\partial\dot{\theta}} = &0 \end{align*}
∂u˙∂V=∂θ˙∂V=00
因此拉格朗日函数中关于广义速率的偏导数项有:
∂
L
∂
u
˙
=
∂
T
∂
u
˙
=
m
2
⋅
2
x
˙
p
sin
θ
+
m
2
⋅
2
y
˙
p
cos
θ
∂
L
∂
u
˙
=
∂
T
∂
θ
˙
=
m
2
⋅
2
x
˙
p
(
l
+
u
)
cos
θ
−
m
2
⋅
2
y
˙
p
(
l
+
u
)
sin
θ
\begin{align*} \frac{\partial L}{\partial\dot{u}} =\frac{\partial T}{\partial\dot{u}} =&\frac{m}{2}\cdot 2\dot x_p\sin\theta +\frac{m}{2}\cdot 2\dot y_p\cos\theta \\ \frac{\partial L}{\partial\dot{u}} =\frac{\partial T}{\partial\dot{\theta}} = &\frac{m}{2}\cdot 2\dot x_p(l+u)\cos\theta - \frac{m}{2}\cdot 2\dot y_p(l+u)\sin\theta \end{align*}
∂u˙∂L=∂u˙∂T=∂u˙∂L=∂θ˙∂T=2m⋅2x˙psinθ+2m⋅2y˙pcosθ2m⋅2x˙p(l+u)cosθ−2m⋅2y˙p(l+u)sinθ
上面两项对时间求导后得到:
d
d
t
∂
L
∂
u
˙
=
m
x
¨
p
sin
θ
+
m
x
˙
p
θ
˙
cos
θ
+
m
y
¨
p
cos
θ
−
m
y
˙
p
θ
˙
sin
θ
d
d
t
∂
L
∂
θ
˙
=
m
(
l
+
u
)
x
¨
p
cos
θ
+
m
(
l
˙
+
u
˙
)
x
˙
p
cos
θ
−
m
(
l
+
u
)
x
˙
p
θ
˙
sin
θ
−
m
(
l
+
u
)
y
¨
p
sin
θ
−
m
(
l
˙
+
u
˙
)
y
˙
p
sin
θ
−
m
(
l
+
u
)
y
˙
p
θ
˙
cos
θ
\begin{align*} \frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial L}{\partial \dot{u}} = & m\ddot{x}_p\sin\theta+m\dot{x}_p\dot\theta\cos\theta+m\ddot{y}_p\cos\theta-m\dot{y}_p\dot\theta\sin\theta \\ \frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial L}{\partial \dot{\theta}} = & m(l+u)\ddot{x}_p\cos\theta+m(\dot l+\dot u)\dot{x}_p\cos\theta-m(l+u)\dot{x}_p\dot\theta\sin\theta\\ &-m(l+u)\ddot{y}_p\sin\theta-m(\dot l+\dot u)\dot{y}_p\sin\theta-m(l+u)\dot{y}_p\dot\theta\cos\theta\\ \end{align*}
dtd∂u˙∂L=dtd∂θ˙∂L=mx¨psinθ+mx˙pθ˙cosθ+my¨pcosθ−my˙pθ˙sinθm(l+u)x¨pcosθ+m(l˙+u˙)x˙pcosθ−m(l+u)x˙pθ˙sinθ−m(l+u)y¨psinθ−m(l˙+u˙)y˙psinθ−m(l+u)y˙pθ˙cosθ
计算动能项对两个广义坐标的偏导:
∂
T
∂
u
=
∂
T
∂
x
˙
p
∂
x
˙
p
∂
u
+
∂
T
∂
y
˙
p
∂
y
˙
p
∂
u
∂
T
∂
θ
=
∂
T
∂
x
˙
p
∂
x
˙
p
∂
θ
+
∂
T
∂
y
˙
p
∂
y
˙
p
∂
θ
\begin{align*} \frac{\partial T}{\partial{u}} = \frac{\partial T}{\partial\dot x_p} \frac{\partial\dot x_p}{\partial u} +\frac{\partial T}{\partial\dot y_p} \frac{\partial\dot y_p}{\partial u}\\ \frac{\partial T}{\partial{\theta}} = \frac{\partial T}{\partial\dot x_p} \frac{\partial\dot x_p}{\partial \theta} +\frac{\partial T}{\partial\dot y_p} \frac{\partial\dot y_p}{\partial\theta} \end{align*}
∂u∂T=∂x˙p∂T∂u∂x˙p+∂y˙p∂T∂u∂y˙p∂θ∂T=∂x˙p∂T∂θ∂x˙p+∂y˙p∂T∂θ∂y˙p
右边的各项代入后计算得到:
∂
T
∂
u
=
m
x
˙
p
θ
˙
cos
θ
−
m
y
˙
p
θ
˙
sin
θ
∂
T
∂
θ
=
m
x
˙
p
(
u
˙
cos
θ
−
u
θ
˙
sin
θ
)
+
m
y
˙
p
(
−
u
˙
sin
θ
−
u
θ
˙
cos
θ
)
\begin{align*} \frac{\partial T}{\partial{u}} =& m\dot x_p \dot\theta\cos\theta-m\dot y_p \dot\theta\sin\theta\\ \frac{\partial T}{\partial{\theta}} =& m\dot x_p(\dot u\cos\theta-u\dot\theta\sin\theta)+m\dot y_p(-\dot u\sin\theta-u\dot\theta\cos\theta) \end{align*}
∂u∂T=∂θ∂T=mx˙pθ˙cosθ−my˙pθ˙sinθmx˙p(u˙cosθ−uθ˙sinθ)+my˙p(−u˙sinθ−uθ˙cosθ)
计算势能项对两个广义坐标的偏导:
∂
V
∂
u
=
−
m
g
cos
θ
+
k
u
∂
V
∂
θ
=
m
g
(
l
+
u
)
sin
θ
\begin{align*} \frac{\partial V}{\partial{u}} = &-mg\cos\theta+ku\\ \frac{\partial V}{\partial{\theta}} = & mg(l+u)\sin\theta \end{align*}
∂u∂V=∂θ∂V=−mgcosθ+kumg(l+u)sinθ
拉格朗日函数中关于广义速率的偏导数项有:
∂
L
∂
u
=
m
x
˙
p
θ
˙
cos
θ
−
m
y
˙
p
θ
˙
sin
θ
+
m
g
cos
θ
−
k
u
∂
L
∂
θ
=
m
x
˙
p
u
˙
cos
θ
−
m
x
˙
p
u
θ
˙
sin
θ
−
m
y
˙
p
u
˙
sin
θ
−
m
y
˙
p
u
θ
˙
cos
θ
−
m
g
(
l
+
u
)
sin
θ
\begin{align*} \frac{\partial L}{\partial{u}} =& m\dot x_p \dot\theta\cos\theta-m\dot y_p \dot\theta\sin\theta+mg\cos\theta-ku\\ \frac{\partial L}{\partial{\theta}} =& m\dot x_p\dot u\cos\theta-m\dot x_pu\dot\theta\sin\theta-m\dot y_p\dot u\sin\theta-m\dot y_pu\dot\theta\cos\theta-mg(l+u)\sin\theta \end{align*}
∂u∂L=∂θ∂L=mx˙pθ˙cosθ−my˙pθ˙sinθ+mgcosθ−kumx˙pu˙cosθ−mx˙puθ˙sinθ−my˙pu˙sinθ−my˙puθ˙cosθ−mg(l+u)sinθ
综上,拉格朗日方程如下:
m
x
¨
p
sin
θ
+
m
x
˙
p
θ
˙
cos
θ
+
m
y
¨
p
cos
θ
−
m
y
˙
p
θ
˙
sin
θ
−
(
m
x
˙
p
θ
˙
cos
θ
−
m
y
˙
p
θ
˙
sin
θ
+
m
g
cos
θ
−
k
u
)
=
0
m
(
l
+
u
)
x
¨
p
cos
θ
+
m
(
l
˙
+
u
˙
)
x
˙
p
cos
θ
−
m
(
l
+
u
)
x
˙
p
θ
˙
sin
θ
−
m
(
l
+
u
)
y
¨
p
sin
θ
−
m
(
l
˙
+
u
˙
)
y
˙
p
sin
θ
−
m
(
l
+
u
)
y
˙
p
θ
˙
cos
θ
−
(
m
x
˙
p
u
˙
cos
θ
−
m
x
˙
p
u
θ
˙
sin
θ
−
m
y
˙
p
u
˙
sin
θ
−
m
y
˙
p
u
θ
˙
cos
θ
−
m
g
(
l
+
u
)
sin
θ
)
=
0
\begin{align*} & m\ddot{x}_p\sin\theta+m\dot{x}_p\dot\theta\cos\theta+m\ddot{y}_p\cos\theta-m\dot{y}_p\dot\theta\sin\theta -(m\dot x_p \dot\theta\cos\theta-m\dot y_p \dot\theta\sin\theta+mg\cos\theta-ku)=0\\ & m(l+u)\ddot{x}_p\cos\theta+m(\dot l+\dot u)\dot{x}_p\cos\theta-m(l+u)\dot{x}_p\dot\theta\sin\theta-m(l+u)\ddot{y}_p\sin\theta-m(\dot l+\dot u)\dot{y}_p\sin\theta-m(l+u)\dot{y}_p\dot\theta\cos\theta\\ &-(m\dot x_p\dot u\cos\theta-m\dot x_pu\dot\theta\sin\theta-m\dot y_p\dot u\sin\theta-m\dot y_pu\dot\theta\cos\theta-mg(l+u)\sin\theta)=0\\ \end{align*}
mx¨psinθ+mx˙pθ˙cosθ+my¨pcosθ−my˙pθ˙sinθ−(mx˙pθ˙cosθ−my˙pθ˙sinθ+mgcosθ−ku)=0m(l+u)x¨pcosθ+m(l˙+u˙)x˙pcosθ−m(l+u)x˙pθ˙sinθ−m(l+u)y¨psinθ−m(l˙+u˙)y˙psinθ−m(l+u)y˙pθ˙cosθ−(mx˙pu˙cosθ−mx˙puθ˙sinθ−my˙pu˙sinθ−my˙puθ˙cosθ−mg(l+u)sinθ)=0
观察关于
u
u
u的拉格朗日方程可知,2、4项可与5、6项抵消,因此有:
m
x
¨
p
sin
θ
+
m
y
¨
p
cos
θ
−
m
g
cos
θ
+
k
u
=
0
m\ddot{x}_p\sin\theta+m\ddot{y}_p\cos\theta-mg\cos\theta+ku=0
mx¨psinθ+my¨pcosθ−mgcosθ+ku=0
代入
x
p
x_p
xp等表达得:
m
x
¨
o
sin
θ
+
m
y
¨
o
cos
θ
+
m
(
l
¨
+
u
¨
)
−
m
(
l
+
u
)
θ
˙
2
−
m
g
cos
θ
+
k
u
=
0
m\ddot{x}_o\sin\theta+m\ddot{y}_o\cos\theta+m(\ddot l+\ddot u)-m(l+u)\dot\theta^2-mg\cos\theta+ku=0
mx¨osinθ+my¨ocosθ+m(l¨+u¨)−m(l+u)θ˙2−mgcosθ+ku=0
观察关于
θ
\theta
θ的拉格朗日方程可知,2、3、5、6项可与7、8、9、10项抵消,因此有:
m
(
l
+
u
)
x
¨
p
cos
θ
−
m
(
l
+
u
)
y
¨
p
sin
θ
+
m
g
(
l
+
u
)
sin
θ
=
0
m(l+u)\ddot{x}_p\cos\theta-m(l+u)\ddot{y}_p\sin\theta+mg(l+u)\sin\theta=0\\
m(l+u)x¨pcosθ−m(l+u)y¨psinθ+mg(l+u)sinθ=0
代入
x
p
x_p
xp等表达得:
m
(
l
+
u
)
(
x
¨
o
cos
θ
−
y
¨
o
sin
θ
+
2
(
l
˙
+
u
˙
)
θ
+
(
l
+
u
)
θ
¨
)
+
m
g
(
l
+
u
)
sin
θ
=
0
m(l+u)(\ddot x_o\cos\theta-\ddot y_o\sin\theta+2(\dot l+\dot u)\theta+(l+u)\ddot\theta)+mg(l+u)\sin\theta=0
m(l+u)(x¨ocosθ−y¨osinθ+2(l˙+u˙)θ+(l+u)θ¨)+mg(l+u)sinθ=0
消去共同因子有:
x
¨
o
cos
θ
−
y
¨
o
sin
θ
+
2
(
l
˙
+
u
˙
)
θ
+
(
l
+
u
)
θ
¨
+
m
g
(
l
+
u
)
sin
θ
=
0
\ddot x_o\cos\theta-\ddot y_o\sin\theta+2(\dot l+\dot u)\theta+(l+u)\ddot\theta+mg(l+u)\sin\theta=0
x¨ocosθ−y¨osinθ+2(l˙+u˙)θ+(l+u)θ¨+mg(l+u)sinθ=0
弹簧悬吊的拉格朗日方程
m x ¨ o sin θ + m y ¨ o cos θ + m ( l ¨ + u ¨ ) − m ( l + u ) θ ˙ 2 − m g cos θ + k u = 0 x ¨ o cos θ − y ¨ o sin θ + 2 ( l ˙ + u ˙ ) θ + ( l + u ) θ ¨ + g sin θ = 0 \begin{align*} m\ddot{x}_o\sin\theta+m\ddot{y}_o\cos\theta+m(\ddot l+\ddot u)-m(l+u)\dot\theta^2-mg\cos\theta+ku =&0 \\ \ddot x_o\cos\theta-\ddot y_o\sin\theta+2(\dot l+\dot u)\theta+(l+u)\ddot\theta+g\sin\theta =&0 \end{align*} mx¨osinθ+my¨ocosθ+m(l¨+u¨)−m(l+u)θ˙2−mgcosθ+ku=x¨ocosθ−y¨osinθ+2(l˙+u˙)θ+(l+u)θ¨+gsinθ=00