弹簧悬吊子系统模型推导

弹簧悬吊子系统模型推导

弹簧悬吊系统是一种在刚性轻绳末端串联弹簧的悬吊系统。现有的文献大多考虑不含弹簧的悬吊系统(吊车等),少数考虑弹簧悬吊的文献模型建立则不够清晰,因此,有必要自己从基本定理建立一个弹簧悬吊系统,用于后续的仿真实验。

已有的悬吊系统大多采用Lagrange建模方法,该方法不考虑系统内部的约束力,而是直接从能量角度出发建立模型。可见,在悬吊系统中使用该方法建模优于使用牛顿法。本文同样使用Lagrange方法建立了弹簧悬吊子系统的模型。

坐标系和符号定义

x o x_o xo y o y_o yo:吊绳上端的坐标,正方向见参考系设定;时变量;

x p x_p xp y p y_p yp:吊绳负载的坐标,正方向见参考系设定;时变量;

l l l:绳子的绳长,此处认为绳子轻质;当绳子可延长时为时变量;

θ \theta θ:吊绳与竖直方向的夹角,取逆时针方向为正;时变量;

k k k:弹簧刚度;常量;

u u u:弹簧伸长量;时变量;

m m m:负载质量;常量

拉格朗日方程

首先写出拉格朗日方程的一般形式:
d d t ∂ L ∂ q ˙ − ∂ L ∂ q = 0 \frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial L}{\partial \dot q}-\frac{\partial L}{\partial q} = 0 dtdq˙LqL=0
其中 q q q是广义坐标, t t t是时间; L L L是拉格朗日函数,构造方式如下:
L = T − V L = T-V L=TV
T T T是系统动能, V V V是系统势能。

能量项

T = m 2 ( x ˙ p 2 + y ˙ p 2 ) T = \frac{m}{2}(\dot x_p^2+\dot y_p^2) T=2m(x˙p2+y˙p2)

x x x轴所在线为零势能线,则有
V = 1 2 k u 2 + m g ( − y p ) V = \frac{1}{2}ku^2+mg(-y_p) V=21ku2+mg(yp)

几何关系

考虑绳全程绷直,有:
x p = x o + ( l + u ) sin ⁡ θ y p = y o + ( l + u ) cos ⁡ θ x_p = x_o+(l+u)\sin\theta \\ y_p = y_o+(l+u)\cos\theta xp=xo+(l+u)sinθyp=yo+(l+u)cosθ
两边对时间求导得到速度关系:
x ˙ p = x ˙ o + ( l ˙ + u ˙ ) sin ⁡ θ + ( l + u ) θ ˙ cos ⁡ θ y ˙ p = y ˙ o + ( l ˙ + u ˙ ) cos ⁡ θ − ( l + u ) θ ˙ sin ⁡ θ \dot x_p =\dot x_o+(\dot l+\dot u)\sin\theta +(l+u)\dot\theta \cos\theta\\ \dot y_p =\dot y_o+(\dot l+\dot u)\cos\theta -(l+u)\dot\theta \sin\theta x˙p=x˙o+(l˙+u˙)sinθ+(l+u)θ˙cosθy˙p=y˙o+(l˙+u˙)cosθ(l+u)θ˙sinθ
继续对时间求导得到加速度关系:
x ¨ p = x ¨ o + ( l ¨ + u ¨ ) sin ⁡ θ + 2 ( l ˙ + u ˙ ) θ ˙ cos ⁡ θ + ( l + u ) θ ¨ cos ⁡ θ − ( l + u ) θ ˙ 2 sin ⁡ θ y ¨ p = y ¨ o + ( l ¨ + u ¨ ) cos ⁡ θ − 2 ( l ˙ + u ˙ ) θ ˙ sin ⁡ θ − ( l + u ) θ ¨ sin ⁡ θ − ( l + u ) θ ˙ 2 cos ⁡ θ \ddot x_p =\ddot x_o+(\ddot l+\ddot u)\sin\theta +2(\dot l+\dot u)\dot\theta \cos\theta +(l+u)\ddot\theta \cos\theta -(l+u)\dot\theta^2 \sin\theta\\ \ddot y_p =\ddot y_o+(\ddot l+\ddot u)\cos\theta -2(\dot l+\dot u)\dot\theta \sin\theta -(l+u)\ddot\theta \sin\theta -(l+u)\dot\theta^2 \cos\theta x¨p=x¨o+(l¨+u¨)sinθ+2(l˙+u˙)θ˙cosθ+(l+u)θ¨cosθ(l+u)θ˙2sinθy¨p=y¨o+(l¨+u¨)cosθ2(l˙+u˙)θ˙sinθ(l+u)θ¨sinθ(l+u)θ˙2cosθ

代入计算

取两个广义坐标 u u u θ \theta θ,则拉格朗日函数各项计算如下。

首先计算动能项对两个广义坐标速率的偏导:
∂ T ∂ u ˙ = ∂ T ∂ x ˙ p ∂ x ˙ p ∂ u ˙ + ∂ T ∂ y ˙ p ∂ y ˙ p ∂ u ˙ ∂ T ∂ θ ˙ = ∂ T ∂ x ˙ p ∂ x ˙ p ∂ θ ˙ + ∂ T ∂ y ˙ p ∂ y ˙ p ∂ θ ˙ \begin{align*} \frac{\partial T}{\partial\dot{u}} = \frac{\partial T}{\partial\dot x_p} \frac{\partial\dot x_p}{\partial \dot u} +\frac{\partial T}{\partial\dot y_p} \frac{\partial\dot y_p}{\partial \dot u}\\ \frac{\partial T}{\partial\dot{\theta}} = \frac{\partial T}{\partial\dot x_p} \frac{\partial\dot x_p}{\partial \dot \theta} +\frac{\partial T}{\partial\dot y_p} \frac{\partial\dot y_p}{\partial \dot \theta} \end{align*} u˙T=x˙pTu˙x˙p+y˙pTu˙y˙pθ˙T=x˙pTθ˙x˙p+y˙pTθ˙y˙p
右边的各项代入后计算得到:
∂ T ∂ u ˙ = m 2 ⋅ 2 x ˙ p sin ⁡ θ + m 2 ⋅ 2 y ˙ p cos ⁡ θ ∂ T ∂ θ ˙ = m 2 ⋅ 2 x ˙ p ( l + u ) cos ⁡ θ − m 2 ⋅ 2 y ˙ p ( l + u ) sin ⁡ θ \begin{align*} \frac{\partial T}{\partial\dot{u}} =&\frac{m}{2}\cdot 2\dot x_p\sin\theta +\frac{m}{2}\cdot 2\dot y_p\cos\theta \\ \frac{\partial T}{\partial\dot{\theta}} = &\frac{m}{2}\cdot 2\dot x_p(l+u)\cos\theta - \frac{m}{2}\cdot 2\dot y_p(l+u)\sin\theta \end{align*} u˙T=θ˙T=2m2x˙psinθ+2m2y˙pcosθ2m2x˙p(l+u)cosθ2m2y˙p(l+u)sinθ
涉及到 x p x_p xp等部分暂时不打开。

接着计算势能项对两个广义坐标速率的偏导:
∂ V ∂ u ˙ = 0 ∂ V ∂ θ ˙ = 0 \begin{align*} \frac{\partial V}{\partial\dot{u}} =&0 \\ \frac{\partial V}{\partial\dot{\theta}} = &0 \end{align*} u˙V=θ˙V=00
因此拉格朗日函数中关于广义速率的偏导数项有:
∂ L ∂ u ˙ = ∂ T ∂ u ˙ = m 2 ⋅ 2 x ˙ p sin ⁡ θ + m 2 ⋅ 2 y ˙ p cos ⁡ θ ∂ L ∂ u ˙ = ∂ T ∂ θ ˙ = m 2 ⋅ 2 x ˙ p ( l + u ) cos ⁡ θ − m 2 ⋅ 2 y ˙ p ( l + u ) sin ⁡ θ \begin{align*} \frac{\partial L}{\partial\dot{u}} =\frac{\partial T}{\partial\dot{u}} =&\frac{m}{2}\cdot 2\dot x_p\sin\theta +\frac{m}{2}\cdot 2\dot y_p\cos\theta \\ \frac{\partial L}{\partial\dot{u}} =\frac{\partial T}{\partial\dot{\theta}} = &\frac{m}{2}\cdot 2\dot x_p(l+u)\cos\theta - \frac{m}{2}\cdot 2\dot y_p(l+u)\sin\theta \end{align*} u˙L=u˙T=u˙L=θ˙T=2m2x˙psinθ+2m2y˙pcosθ2m2x˙p(l+u)cosθ2m2y˙p(l+u)sinθ
上面两项对时间求导后得到:
d d t ∂ L ∂ u ˙ = m x ¨ p sin ⁡ θ + m x ˙ p θ ˙ cos ⁡ θ + m y ¨ p cos ⁡ θ − m y ˙ p θ ˙ sin ⁡ θ d d t ∂ L ∂ θ ˙ = m ( l + u ) x ¨ p cos ⁡ θ + m ( l ˙ + u ˙ ) x ˙ p cos ⁡ θ − m ( l + u ) x ˙ p θ ˙ sin ⁡ θ − m ( l + u ) y ¨ p sin ⁡ θ − m ( l ˙ + u ˙ ) y ˙ p sin ⁡ θ − m ( l + u ) y ˙ p θ ˙ cos ⁡ θ \begin{align*} \frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial L}{\partial \dot{u}} = & m\ddot{x}_p\sin\theta+m\dot{x}_p\dot\theta\cos\theta+m\ddot{y}_p\cos\theta-m\dot{y}_p\dot\theta\sin\theta \\ \frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial L}{\partial \dot{\theta}} = & m(l+u)\ddot{x}_p\cos\theta+m(\dot l+\dot u)\dot{x}_p\cos\theta-m(l+u)\dot{x}_p\dot\theta\sin\theta\\ &-m(l+u)\ddot{y}_p\sin\theta-m(\dot l+\dot u)\dot{y}_p\sin\theta-m(l+u)\dot{y}_p\dot\theta\cos\theta\\ \end{align*} dtdu˙L=dtdθ˙L=mx¨psinθ+mx˙pθ˙cosθ+my¨pcosθmy˙pθ˙sinθm(l+u)x¨pcosθ+m(l˙+u˙)x˙pcosθm(l+u)x˙pθ˙sinθm(l+u)y¨psinθm(l˙+u˙)y˙psinθm(l+u)y˙pθ˙cosθ
计算动能项对两个广义坐标的偏导:
∂ T ∂ u = ∂ T ∂ x ˙ p ∂ x ˙ p ∂ u + ∂ T ∂ y ˙ p ∂ y ˙ p ∂ u ∂ T ∂ θ = ∂ T ∂ x ˙ p ∂ x ˙ p ∂ θ + ∂ T ∂ y ˙ p ∂ y ˙ p ∂ θ \begin{align*} \frac{\partial T}{\partial{u}} = \frac{\partial T}{\partial\dot x_p} \frac{\partial\dot x_p}{\partial u} +\frac{\partial T}{\partial\dot y_p} \frac{\partial\dot y_p}{\partial u}\\ \frac{\partial T}{\partial{\theta}} = \frac{\partial T}{\partial\dot x_p} \frac{\partial\dot x_p}{\partial \theta} +\frac{\partial T}{\partial\dot y_p} \frac{\partial\dot y_p}{\partial\theta} \end{align*} uT=x˙pTux˙p+y˙pTuy˙pθT=x˙pTθx˙p+y˙pTθy˙p
右边的各项代入后计算得到:
∂ T ∂ u = m x ˙ p θ ˙ cos ⁡ θ − m y ˙ p θ ˙ sin ⁡ θ ∂ T ∂ θ = m x ˙ p ( u ˙ cos ⁡ θ − u θ ˙ sin ⁡ θ ) + m y ˙ p ( − u ˙ sin ⁡ θ − u θ ˙ cos ⁡ θ ) \begin{align*} \frac{\partial T}{\partial{u}} =& m\dot x_p \dot\theta\cos\theta-m\dot y_p \dot\theta\sin\theta\\ \frac{\partial T}{\partial{\theta}} =& m\dot x_p(\dot u\cos\theta-u\dot\theta\sin\theta)+m\dot y_p(-\dot u\sin\theta-u\dot\theta\cos\theta) \end{align*} uT=θT=mx˙pθ˙cosθmy˙pθ˙sinθmx˙p(u˙cosθuθ˙sinθ)+my˙p(u˙sinθuθ˙cosθ)
计算势能项对两个广义坐标的偏导:
∂ V ∂ u = − m g cos ⁡ θ + k u ∂ V ∂ θ = m g ( l + u ) sin ⁡ θ \begin{align*} \frac{\partial V}{\partial{u}} = &-mg\cos\theta+ku\\ \frac{\partial V}{\partial{\theta}} = & mg(l+u)\sin\theta \end{align*} uV=θV=mgcosθ+kumg(l+u)sinθ
拉格朗日函数中关于广义速率的偏导数项有:
∂ L ∂ u = m x ˙ p θ ˙ cos ⁡ θ − m y ˙ p θ ˙ sin ⁡ θ + m g cos ⁡ θ − k u ∂ L ∂ θ = m x ˙ p u ˙ cos ⁡ θ − m x ˙ p u θ ˙ sin ⁡ θ − m y ˙ p u ˙ sin ⁡ θ − m y ˙ p u θ ˙ cos ⁡ θ − m g ( l + u ) sin ⁡ θ \begin{align*} \frac{\partial L}{\partial{u}} =& m\dot x_p \dot\theta\cos\theta-m\dot y_p \dot\theta\sin\theta+mg\cos\theta-ku\\ \frac{\partial L}{\partial{\theta}} =& m\dot x_p\dot u\cos\theta-m\dot x_pu\dot\theta\sin\theta-m\dot y_p\dot u\sin\theta-m\dot y_pu\dot\theta\cos\theta-mg(l+u)\sin\theta \end{align*} uL=θL=mx˙pθ˙cosθmy˙pθ˙sinθ+mgcosθkumx˙pu˙cosθmx˙puθ˙sinθmy˙pu˙sinθmy˙puθ˙cosθmg(l+u)sinθ
综上,拉格朗日方程如下:
m x ¨ p sin ⁡ θ + m x ˙ p θ ˙ cos ⁡ θ + m y ¨ p cos ⁡ θ − m y ˙ p θ ˙ sin ⁡ θ − ( m x ˙ p θ ˙ cos ⁡ θ − m y ˙ p θ ˙ sin ⁡ θ + m g cos ⁡ θ − k u ) = 0 m ( l + u ) x ¨ p cos ⁡ θ + m ( l ˙ + u ˙ ) x ˙ p cos ⁡ θ − m ( l + u ) x ˙ p θ ˙ sin ⁡ θ − m ( l + u ) y ¨ p sin ⁡ θ − m ( l ˙ + u ˙ ) y ˙ p sin ⁡ θ − m ( l + u ) y ˙ p θ ˙ cos ⁡ θ − ( m x ˙ p u ˙ cos ⁡ θ − m x ˙ p u θ ˙ sin ⁡ θ − m y ˙ p u ˙ sin ⁡ θ − m y ˙ p u θ ˙ cos ⁡ θ − m g ( l + u ) sin ⁡ θ ) = 0 \begin{align*} & m\ddot{x}_p\sin\theta+m\dot{x}_p\dot\theta\cos\theta+m\ddot{y}_p\cos\theta-m\dot{y}_p\dot\theta\sin\theta -(m\dot x_p \dot\theta\cos\theta-m\dot y_p \dot\theta\sin\theta+mg\cos\theta-ku)=0\\ & m(l+u)\ddot{x}_p\cos\theta+m(\dot l+\dot u)\dot{x}_p\cos\theta-m(l+u)\dot{x}_p\dot\theta\sin\theta-m(l+u)\ddot{y}_p\sin\theta-m(\dot l+\dot u)\dot{y}_p\sin\theta-m(l+u)\dot{y}_p\dot\theta\cos\theta\\ &-(m\dot x_p\dot u\cos\theta-m\dot x_pu\dot\theta\sin\theta-m\dot y_p\dot u\sin\theta-m\dot y_pu\dot\theta\cos\theta-mg(l+u)\sin\theta)=0\\ \end{align*} mx¨psinθ+mx˙pθ˙cosθ+my¨pcosθmy˙pθ˙sinθ(mx˙pθ˙cosθmy˙pθ˙sinθ+mgcosθku)=0m(l+u)x¨pcosθ+m(l˙+u˙)x˙pcosθm(l+u)x˙pθ˙sinθm(l+u)y¨psinθm(l˙+u˙)y˙psinθm(l+u)y˙pθ˙cosθ(mx˙pu˙cosθmx˙puθ˙sinθmy˙pu˙sinθmy˙puθ˙cosθmg(l+u)sinθ)=0
观察关于 u u u的拉格朗日方程可知,2、4项可与5、6项抵消,因此有:
m x ¨ p sin ⁡ θ + m y ¨ p cos ⁡ θ − m g cos ⁡ θ + k u = 0 m\ddot{x}_p\sin\theta+m\ddot{y}_p\cos\theta-mg\cos\theta+ku=0 mx¨psinθ+my¨pcosθmgcosθ+ku=0
代入 x p x_p xp等表达得:
m x ¨ o sin ⁡ θ + m y ¨ o cos ⁡ θ + m ( l ¨ + u ¨ ) − m ( l + u ) θ ˙ 2 − m g cos ⁡ θ + k u = 0 m\ddot{x}_o\sin\theta+m\ddot{y}_o\cos\theta+m(\ddot l+\ddot u)-m(l+u)\dot\theta^2-mg\cos\theta+ku=0 mx¨osinθ+my¨ocosθ+m(l¨+u¨)m(l+u)θ˙2mgcosθ+ku=0
观察关于 θ \theta θ的拉格朗日方程可知,2、3、5、6项可与7、8、9、10项抵消,因此有:
m ( l + u ) x ¨ p cos ⁡ θ − m ( l + u ) y ¨ p sin ⁡ θ + m g ( l + u ) sin ⁡ θ = 0 m(l+u)\ddot{x}_p\cos\theta-m(l+u)\ddot{y}_p\sin\theta+mg(l+u)\sin\theta=0\\ m(l+u)x¨pcosθm(l+u)y¨psinθ+mg(l+u)sinθ=0
代入 x p x_p xp等表达得:
m ( l + u ) ( x ¨ o cos ⁡ θ − y ¨ o sin ⁡ θ + 2 ( l ˙ + u ˙ ) θ + ( l + u ) θ ¨ ) + m g ( l + u ) sin ⁡ θ = 0 m(l+u)(\ddot x_o\cos\theta-\ddot y_o\sin\theta+2(\dot l+\dot u)\theta+(l+u)\ddot\theta)+mg(l+u)\sin\theta=0 m(l+u)(x¨ocosθy¨osinθ+2(l˙+u˙)θ+(l+u)θ¨)+mg(l+u)sinθ=0
消去共同因子有:
x ¨ o cos ⁡ θ − y ¨ o sin ⁡ θ + 2 ( l ˙ + u ˙ ) θ + ( l + u ) θ ¨ + m g ( l + u ) sin ⁡ θ = 0 \ddot x_o\cos\theta-\ddot y_o\sin\theta+2(\dot l+\dot u)\theta+(l+u)\ddot\theta+mg(l+u)\sin\theta=0 x¨ocosθy¨osinθ+2(l˙+u˙)θ+(l+u)θ¨+mg(l+u)sinθ=0

弹簧悬吊的拉格朗日方程

m x ¨ o sin ⁡ θ + m y ¨ o cos ⁡ θ + m ( l ¨ + u ¨ ) − m ( l + u ) θ ˙ 2 − m g cos ⁡ θ + k u = 0 x ¨ o cos ⁡ θ − y ¨ o sin ⁡ θ + 2 ( l ˙ + u ˙ ) θ + ( l + u ) θ ¨ + g sin ⁡ θ = 0 \begin{align*} m\ddot{x}_o\sin\theta+m\ddot{y}_o\cos\theta+m(\ddot l+\ddot u)-m(l+u)\dot\theta^2-mg\cos\theta+ku =&0 \\ \ddot x_o\cos\theta-\ddot y_o\sin\theta+2(\dot l+\dot u)\theta+(l+u)\ddot\theta+g\sin\theta =&0 \end{align*} mx¨osinθ+my¨ocosθ+m(l¨+u¨)m(l+u)θ˙2mgcosθ+ku=x¨ocosθy¨osinθ+2(l˙+u˙)θ+(l+u)θ¨+gsinθ=00

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值