【ACL2024】Graph Chain-of-Thought:基于图结构增强LLM的推理能力

https://arxiv.org/abs/2404.07103

背景

LLM参数化记忆知识,不能参考具体的知识来源。
一般通过RAG改善,但现有RAG往往忽略了文本之间的关联。

贡献

  • 构建了一个名为GRBENCH的图推理基准数据集。来自五个领域的LLMs的外部知识源,包括学术、电子商务、文学、医疗和法律领域。
    同时,这个数据集中的每个样本都是有人工设计的问题和答案组成,这些问题和答案都可以通过参考图或从图中检索信息作为上下文来回答。划分了简单-中等-难三个问题类别
  • 简单有效的框架——图链思考:GRAPH-COT,主要思想就是是使LLMs能够逐步遍历图以找出所需的关键信息,而不是直接将整个子图作为上下文输入到LLMs中请添加图片描述
  • 每次迭代包括三个子步骤:推理,交互和执行。
  • 推理:LLMs提出可以根据当前信息得出结论以及需要从图中获取哪些进一步的信息
  • 交互:LLMs生成从图中获取信息所需的交互(例如,查找节点、检查邻居等)
  • 执行:在图上执行交互步骤中的请求,并返回相应的信息

内容

GRBENCH数据集:五个通用领域的10个图
LLMs仅凭模型参数中存储的内部知识很难回答这些问题,它们需要与外部领域的图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值