目标检测算法——YOLOv5/YOLOv7改进结合涨点Trick之ASFF(自适应空间特征融合)

本文介绍了针对YOLOv5和YOLOv7的改进方法,结合ASFF(Adaptive Spatial Feature Fusion)技术,显著提升了目标检测的平均精度均值mAP,优化了实验效果。论文详细阐述了ASFF的原理和优势,并提供了实现步骤,包括配置common.py、yolo.py文件和yolov5/yolov7_ASFF_Detect.yaml文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

>>>深度学习Tricks,第一时间送达<<<


🚀🚀🚀NEW!!!魔改YOLOv5/YOLOv7目标检测算法来啦 ~

💡💡魔法搭配计算机视觉领域各类创新新颖且行之有效的网络结构,平均精度均值mAP涨点明显,实验效果也俱佳。有需要的小伙伴可以在CSDN/QQ后台留言+点赞收藏喔!!!👍👍👍🔥🔥🔥


论文题目:Learning Spatial Fusion for Single-Shot Object Detection

论文链接:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

加勒比海带66

清风徐来,水波不兴。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值