基于统计检验与随机森林分析不同天气类型的影响因素

1.项目背景

本项目使用了一个人工合成的天气数据集,模拟了雨天、晴天、多云和雪天四种类型,在分析过程中,对数据进行了异常值处理,并通过描述性统计对数据进行了初步探索,接着,使用Kruskal-Wallis检验、Dunn检验和卡方检验分析了温度、湿度、风速、降水量、气压、紫外线指数、能见度、云量、季节和地点等特征对天气类型的影响,最终,构建了随机森林模型进行预测,并生成了模型的重要特征图,该项目适用于初学者学习如何进行全面的数据分析和机器学习模型构建。

2.数据说明

列名 中文解释 单位 备注
Temperature 温度 摄氏度 气温的测量值
Humidity 湿度 % 空气中水蒸气的含量
Wind Speed 风速 km/h 风的速度
Precipitation (%) 降水量 % 降水强度或降水量分布
Cloud Cover 云量 - 天空中云的覆盖程度,文字描述
Atmospheric Pressure 气压 hPa 大气压力
UV Index 紫外线指数 - 表示紫外线强度的指数
Season 季节 - 数据采集的季节
Visibility (km) 能见度 km 可见距离的测量值
Location 地点 - 数据采集地点,如内陆、山区等
Weather Type 天气类型 - 如晴天、雨天等

3.Python库导入及数据读取

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import scipy.stats as stats
import scikit_posthocs as sp
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report,confusion_matrix
data = pd.read_csv('/home/mw/input/07292689/weather_classification_data.csv')

4.数据预览及预处理

查看数据信息:

查看重复值:

0

查看分类特征的唯一值:

Cloud Cover:
['partly cloudy' 'cl
### 使用随机森林算法分析足球比赛数据 #### 数据准备 为了应用随机森林算法于足球比赛数据分析,首先需要收集并整理相关数据集。这些数据通常包括但不限于两队的历史战绩、球员表现统计天气状况等因素[^3]。 #### 特征工程 在构建模型之前,需对原始数据进行预处理特征提取工作。这一步骤可能涉及缺失值填充、异常点检测以及创建新的衍生变量等操作。对于足球赛事而言,可以考虑加入诸如主场优势指标、近期胜率变化趋势之类的特性来增强模型的表现力[^1]。 #### 构建训练模型 利用Python中的`scikit-learn`库实现随机森林分类器非常简便: ```python from sklearn.ensemble import RandomForestClassifier import pandas as pd # 假设df为已清洗好的DataFrame对象 X = df.drop('target', axis=1) # target列代表目标标签(即胜负平) y = df['target'] rf_model = RandomForestClassifier(n_estimators=100, random_state=42) rf_model.fit(X, y) ``` 上述代码片段展示了如何初始化一个具有100棵决策树组成的随机森林实例,并将其应用于给定的训练样本上完成拟合过程[^2]。 #### 模型评估 通过交叉验证方法测试模型性能,计算准确度得分或其他评价标准如F1-Score、AUC曲线下的面积等。此外还可以绘制重要性图表展示各个属性对预测结果的影响程度。 ```python from sklearn.model_selection import cross_val_score scores = cross_val_score(rf_model, X, y, cv=5) print(f'Cross-validation scores: {scores.mean():.3f} (+/- {scores.std() * 2:.3f})') ``` #### 结果解释 当得到满意的模型之后,则可以根据实际需求调整阈值或采用其他策略优化最终输出。值得注意的是,在解读随机森林给出的概率估计时应当谨慎行事,因为它们并不代表真实的概率分布而是基于投票机制得出的比例关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值