安装(Rstudio)
if(!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("Maaslin2")
library(Maaslin2)
?Maaslin2
使用
setwd("~/Desktop")
dir.create("R_Maaslin_tutorial") # Create a new directory
setwd("R_Maaslin_tutorial") # Change the current working directory
getwd() #check if directory has been successfully changed
# 下载示例文件
input_data = system.file("extdata", "HMP2_taxonomy.tsv", package="Maaslin2") # The abundance table file
input_data
input_metadata = system.file("extdata", "HMP2_metadata.tsv", package="Maaslin2") # The metadata table file
input_metadata
# 编辑好格式之后,将自己的文件导入
input_data <- read.table("~/bin/797_MAGs_tpm_by_bin.txt",
header = TRUE, row.names = 1)
input_data <- t(input_data)
input_data_relative <- input_data / rowSums(input_data)
# 将相对丰度矩阵显式转换为数据框
input_data_relative <- as.data.frame(input_data_relative)
input_metadata <- read.table("metadata.txt", header = TRUE, row.names = 1)
# 运行
# run Maaslin2
fit_data_filter = Maaslin2(input_data = input_data_relative,
input_metadata = input_metadata,
normalization = "NONE",
output = "test",
transform = "AST",
analysis_method= "LM",
random_effects = c("ID"), # 随机效应(需转换为分组变量)
fixed_effects = c("Age"), # 固定效应
reference = c("Age,D1"),
min_prevalence = 0.1,
min_abundance = 0.0001,
max_significance = 0.2,
cores = 6)
metadata示例
taxonomy示例
在MaAsLin中,可以用于关联测试的有几种不同类型的统计模型
对于模型,如果您的输入是计数,则可以使用NEGBIN(负二项分布)和ZINB(零膨胀负二项分布),而对于非计数(例如百分比、CPM或相对丰度)输入,您可以使用LM(线性模型)和CPLM(复合泊松线性模型)。