MaAsLin2:确定表型、环境、暴露、协变量和微生物元组学特征之间的多变量关联

maaslin2 – 哈滕豪威尔实验室

安装(Rstudio)

if(!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("Maaslin2")

library(Maaslin2)
?Maaslin2

使用 

setwd("~/Desktop")
dir.create("R_Maaslin_tutorial") # Create a new directory
setwd("R_Maaslin_tutorial") # Change the current working directory 
getwd() #check if directory has been successfully changed

# 下载示例文件
input_data = system.file("extdata", "HMP2_taxonomy.tsv", package="Maaslin2") # The abundance table file
input_data

input_metadata = system.file("extdata", "HMP2_metadata.tsv", package="Maaslin2") # The metadata table file
input_metadata

# 编辑好格式之后,将自己的文件导入
input_data <- read.table("~/bin/797_MAGs_tpm_by_bin.txt",
                 header = TRUE, row.names = 1)
input_data <- t(input_data)
input_data_relative <- input_data / rowSums(input_data)
# 将相对丰度矩阵显式转换为数据框
input_data_relative <- as.data.frame(input_data_relative)

input_metadata <- read.table("metadata.txt", header = TRUE, row.names = 1)

# 运行
# run Maaslin2
fit_data_filter = Maaslin2(input_data     = input_data_relative, 
                           input_metadata = input_metadata, 
                           normalization  = "NONE",
                           output         = "test", 
                           transform      = "AST",
                           analysis_method= "LM",
                           random_effects = c("ID"),   # 随机效应(需转换为分组变量)
                           fixed_effects  = c("Age"),  # 固定效应
                           reference      = c("Age,D1"),
                           min_prevalence = 0.1,
                           min_abundance  = 0.0001,
                           max_significance = 0.2,
                           cores          = 6)

metadata示例

taxonomy示例

在MaAsLin中,可以用于关联测试的有几种不同类型的统计模型

对于模型,如果您的输入是计数,则可以使用NEGBIN(负二项分布)和ZINB(零膨胀负二项分布),而对于非计数(例如百分比、CPM或相对丰度)输入,您可以使用LM(线性模型)和CPLM(复合泊松线性模型)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值