《Fusion of edge detection and graph neural networks to classifyingelectrocardiogram signals》论文翻译

研究者提出了一种融合边缘检测和图神经网络的心电图信号分类方法,展示了在MIT-BIH和PTB-XL数据集上的优秀性能,接近临床实践的人类水平。该方法通过Sobel算子处理波形图像,然后使用GNN进行有效分类,为心脏病预测提供了新的实用解决方案。
摘要由CSDN通过智能技术生成

边缘检测与图神经网络融合在心电图信号分类中的应用

原文链接:Fusion of edge detection and graph neural networks to classifying electrocardiogram signals - ScienceDirect

代码链接:GitHub - linhduongtuan/GraphECGNet: The repository is associated with a paper titled "Fusion of edge detection and graph neural networks for classifying electrocardiogram signals," which was published in the Journal of Expert Systems with Applications.

一、摘要

心电图信号的分析是诊断心血管疾病的关键因素之一。然而,在临床实践中,心电图的自动处理仍然受到现有算法准确性的制约。深度学习方法最近在包括预测性医疗保健在内的各种任务中取得了惊人的成功。图神经网络是一类机器学习算法,它可以通过直接从图结构数据中提取重要信息进行学习,并对未知数据进行预测。这种算法适合于挖掘复杂的图形数据,推导出有用的预测。在这项工作中,我们提出了一个图神经网络(GNN)模型,该模型在两个数据集上训练,这些数据集包括从波士顿贝斯以色列医院和麻省理工学院(MITBIH)的实验室提取的107,000多个单导联信号图像,以及由物理技术联邦分析(PTB)分析的150万份标记数据。我们提出的GNN取得了很好的性能,即结果表明,基于GNN的心电图分类,无论是使用单导联还是12导联设置,都更接近标准临床实践中的人类水平。

通过几个测试实例,所提出的方法获得了1.0的精度,从而在有效性和时间效率方面优于两个数据库的各种最新基线。我们期望这种方法可以作为一种非侵入性的预筛查工具来帮助医生实时监测和执行他们的诊断活动。

二、介绍

在本文中,我们提出了一种实用的解决方案来提高心脏病预测性能,利用图神经网络对心电数据的能力。首先,我们将这些数据集中的所有ECG记录在其注释后转换为波形图像。其次,我们使用Sobel算子(Kanopoulos, Vasanthavada, & Baker, 1988)进行边缘检测,将波形图像转换为图形结构格式。处理后的数据然后用于提供GNN模型。我们的方法已经在两个数据集上进行了评估,即MIT-BIH心律失常(Goldberger等人,2000)和PTB-XL (Wagner等人,2020)。使用上述数据集对所提出的ECG-GNN进行了一系列实验,并将其与基于卷积神经网络(包括ResNet和ConvNet)的各种最先进方法进行了比较。评价结果表明,该模型在效率和有效性方面都取得了较好的预测效果。

在这方面,我们的论文有以下贡献:

• 使用Sobel算子检测ECG图像中波形边缘的实用方法。

• 一种可行的心脏病分类解决方案,在ECG信号上部署GNN技术。据我们所知,我们的研究是第一次尝试将gnn部署在自动分类ECG信号中以检测心脏问题。

• 对两个真实心电图数据集进行实证评估,将我们提出的模型与使用卷积神经网络(ResNet26D和ConvNet)的两种最先进的方法进行比较。

三、背景

1、用Sobel算子进行边缘检测

Sobel算子被认为是一种简单而有效的图像边缘检测方法(Kanopoulos等,1988)。它是一个离散微分算子,计算图像强度函数梯度的近似值。从技术上讲,它将输入图像与卷积矩阵相乘以产生明显的不连续。特别是,边缘检测是在水平和垂直方向上执行的,使用以下两个卷积矩阵。

本质上,Sobel算子是一个加权平均过滤器,解释如下:在输入图像的每一点,操作的结果要么是相应的梯度向量,要么是这个向量的范数。滤波器是f(x,y)的偏导数作为中心计算在x,y方向上的3 × 3邻域。为了消除噪声,在中心点上相应增加一定的权值,其数字梯度近似方程描述如下:

该算子的主要优点是其快速的检测速度,以及去除噪声的能力。由于这些特点,在本工作中使用滤波器来检测心电图像中的波形,试图提高预测性能。

2、图神经网络

事实上,gnn是处理抽象概念(如关系和交互)的好方法。作为gnn的命名方式,它们为边缘级、模型级和图级分类任务、图可视化和图聚类提供了一种方便的方法。

我们称𝑢和𝑣为图中的两个节点,并将其对应的特征向量分别为𝑢和𝑣。编码器功能𝐸𝑛𝑐(𝑢)和𝐸𝑛𝑐(𝑣)特征向量转换为𝑧𝑢和𝑧𝑣。

 

 W_k\sum \frac{h_v^{k-1}}{|N(v)|}是节点v的所有邻居节点的平均。

在𝑘th编码器层中,给定一个目标节点,相邻节点𝑗∈𝛤的重要性计算为:

其中𝑊(𝑘)表示𝑘th编码器层的可训练参数。节点可比性的重要系数通过softmax函数归一化:

 

其中,N_i表示节点i相邻的节点。上述公式将所有相邻节点的重要性得分之和归一化为1。

𝑘th编码器层输出的节点的最终表示使用以下公式计算:

在链路预测任务中,需要在图中表示节点之间的关系,并预测两个实体之间是否存在连接。同时,在节点分类任务中,是通过查看相邻节点的标签来了解给定图中每个节点的节点嵌入。在图级分类任务中,需要将整个图分类到合适的类别中。这类似于图像分类,但目标替代了图域。

四、提出的方法

1、数据转换

图神经网络接受以带有节点和边的图格式准备的输入数据。我们将原始图像转换为DICOM格式(医学数字成像和通信),并将其转换为联合摄影专家组(JPEG)的较轻格式,然后将其重新缩放为512 × 512 × 1。

心电图记录在其注释后转换为波形图像。为了获得更好的性能,我们将所有预处理图像的大小设置为64 × 64 × 1。然后,利用变换后的心电信号图像构造图格式数据。

每个3 × 3子矩阵通过滤波器在水平和垂直轴上进行卷积,计算每个子矩阵的梯度。由于所有灰度图像的转换,如果梯度幅度大于128的灰度值,则可以改变每个像素(Saha et al, 2021)。然后使用边缘映射为每个数据集构建适当的图形。然后利用Sobel算子(Kanopoulos et al ., 1988)检测波形图像的边缘,然后按照以下步骤将波形图像转换为图形数据:

• 将灰度强度值等于或大于128的像素转换为节点。节点特征包含相对像素的强度;

• 边缘用于连接顶点,将原始图像中的相邻像素分组;

• 图是由单个图像构建的,节点和边是由具有相同图属性的相关图像构建的。被称为灰度强度值的顶点属性是按图形方向规范化的。归一化算子是将预处理图像的原始值减去每个图下所有属性的均值,然后除以标准差。

2、分类引擎

提出的的体系结构包括两个主要阶段,即训练和测试,如图1所示。在预处理阶段,第一步是将所有ECG记录在其注释后转换为波形图像。每个心电记录由一组以数字格式存储的电信号组成,从它们的注释文件中,构造相应的图像作为接下来步骤中分类模型的输入。然后,使用Sobel算子(参见3.1节)滤除噪声,检测心电图像中的波形,从而提高预测性能。

 

我们使用GraphConv层(Li, Han, & Wu, 2018;NT & Maehara, 2019;Oono & Suzuki, 2021),它由一种起源于理论观点的层结构组成,它与一维Weisfeiler-Leman图同构启发式(1-WL)有关(Leman & Weisfeiler, 1968)。该层可以将多栈的高阶图结构转换成语句。我们构建了一个只有三层的图神经网络,以及基于GraphConv主干的三个GNN模型(Morris等人,2018)。GNN第一层的输入输出通道等于相关输入数据的节点特征个数,等于64。其他GNN层的下两个输入输出通道设置为64。在前两个GNN层之后,ReLu (Agarap, 2018)和Dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014)的激活函数为0.5,而最后一个GNN层连接到ReLu激活和一个输入为64,输出为类别数的线性层。

选择三层的基本原理如下。已有研究表明,图神经网络在窄宽度和浅深度的尺度比下效果更好。特别是在之前的研究(Loukas, 2020)中,作者根据GNN深度和宽度比例的可扩展性进行了一系列实验。这些结果表明,考虑到使用更深或更宽的模型,gnn在训练和测试阶段的性能都会降低。在本文中,我们进行了一系列的经验实验,如滤波操作,GNN的层类型,以及宽度和深度的比例最终,我们意识到在效率和有效性之间的最佳权衡是使用三层深度和等于64的宽度通道相结合。

表2显示了使用的骨干网的信息,包括在两个数据集上的参数数量、模型大小和训练时间。与其他模型相比,GATv2包含的参数数量最多。特别是,它的参数数量为3144个,而GraphConv有2952个,GAT和GCN的参数数量都较少,分别为1768个和1064个。虽然这些主干在模型大小和参数数量上有所不同,但它们的训练时间对于MIT-BIH数据集都小于0.5 s,对于PTB-XL数据集都小于1 s。

 

表3总结了我们提出的图神经网络模型的信息。GNN第一层的输入输出通道等于相关输入数据的节点特征个数,等于64。其他GNN层的下两个输入输出通道设置为64。在前两个GNN层之后,ReLu (Agarap, 2018)和Dropout (Srivastava et al ., 2014)的激活函数为0.5,而最后一个GNN层连接到ReLu激活和一个输入为64,输出为类别数的线性层。

 为了促进后续研究,我们在支持库中发布了代码和数据以及模型的训练权值。

五、评价

1、数据集

MIT-BIH rhythmia4 (Goldberger et al ., 2000)

PTB-XL (Wagner et al ., 2020)

数据集情况如表所示,单位为获得图像数量

 

MIT-BIH和PTB-XL数据集的图像示例及其使用Sobel滤波器提取的相应边缘分别如图2和图3所示。对于MIT-BIH数据集,基于数据集附加的元数据,使用单头提取异常信号。这是根据元数据中给出的注释完成的。因此,得到的图像是方阵的。相比之下,PTB-XL数据集中的图像是矩形的,因为它们是通过不同的方式收集的,即使用长度大于10 s的窗口对信号进行采样。相应地,在本工作中,我们使用10 s的窗口长度来获取数据。

 

六、结果

图4和图5显示了在给定数据集上运行我们提出的ECG-GNN模型所得到的混淆矩阵。为了降低训练成本,我们使用了一个设置为10个epoch的早期停止函数。

图4显示了在MIT-BIH数据集上获得的混淆矩阵。它由四个子图组成,分别为GAT、GATv2、GCN和GraphConv,用于不同的用人层配置。很明显,我们提出的方法对两个数据集中的任何类别都达到了最佳精度。特别是图4(a)、4(c)和4(d)所示的结果表明,ECGGNN模型在MIT-BIH中对所有8个类别都达到了100%的最大准确率仅通过图4(b)所示的GATv2配置,得到的准确率为99.90%,38个VEB类样本全部被误分类为RBB。值得注意的是,每个类别之间在数量上存在显著差异。例如,在MIT-BIH数据集中,最大的类别是NORM,有25,572个样本,而最小的类别是VEB,只有38个样本。这意味着我们提出的模型能够处理两个数据集中的数据不平衡。

在PTB-XL数据集上运行本文方法得到的结果如图5所示。我们看到了与MIT-BIH数据集取得的类似结果。从图中可以看出,使用GAT、GATv2、GCN和GraphConv这四种配置,模型得到了最大的精度,即100%。MIT-BIH数据集也存在数据不平衡的模式,其中NORM是最大的类别,有333,446张测试图像,STTC是最小的类别,只有3482张测试图像。总之,这表明ECG模型在包含大量图像的类别和包含少量图像的类别中都能很好地工作。

图6(a) -6 (d)分别为MIT-BIH数据集在GAT、GATv2、GCN和GraphConv等不同配置下训练过程中每个历元后的准确率和损失值。从这些子图中,我们可以观察到,这些值在几个周期后很快达到理想速率。由于MIT-BIH数据集的图像数量远远少于剩余的数据集,因此其精度和损失值收敛速度更快,即小于10个epoch。否则,训练过程需要大约20个epoch才能完全优化。同样,很容易看出,图7(a) -7 (d)与图6(a) -6 (d)在训练集方面具有相似的模式

 七、结论

这项工作提出了一种可行的解决方案,从单导联和12导联心电图记录数据库中检测某些cvd。

从观察到现有方法实现有限的预测性能开始,并且大多数方法使用支持向量机算法,或者像CNN和LSTM这样的深度学习模型的组合,我们假设GNN应该比以前现有的架构带来更好的性能。我们提出的模型基于三层GraphConv和最后一层Linear作为预测引擎来实现。我们提出的架构的主要优点之一是,与公开的大型单导联和标准12导联心电图数据库中的相关研究相比,该模型的预测性能优于预测性能。

对于我们未来的工作,我们计划通过考虑PTB-XL数据库的其他子类、节奏和形式分类任务来扩展评估。这是为了更好地研究GNN模型的内在特征,并突出其新颖性。最后但同等重要的是,我们也致力于为医生提供一个实用的工具来辅助心电信号的自动诊断。CAD预计将作为一个连续的实时工具,能够为广大医生服务。这种工具非常适用于许多可穿戴设备,因为它有助于更早、更快地检测到人类ECG信号的每一个异常。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值