对联邦学习的威胁、攻击和防御:问题、分类和观点

对联邦学习的威胁、攻击和防御:问题、分类和观点

FL的挑战(Federal Learning)

异构化的挑战

随着worker的多元化和复杂性,我们加强了对相互信任、效率、质量趋同的关注,需要在储存、计算和通信能力上应对设备的异构性,非i.i.d数据,以及不同本地应用环境下的模型等情况。

通信的挑战

降低通信成本是FL的主要瓶颈,因为worker和Server进行多次交互,且常常连接不稳定。

安全与隐私威胁的挑战

恶意的worker可能会试图窃取诚实的worker的隐私信息,或恶意的worker可以发起联合攻击,损害全局模型的性能。

如下图所示,FL执行的多阶段框架可以分为三个阶段,包括数据和行为审计、训练和预测。该模型在FL执行的每个阶段都面临不同的安全和隐私威胁。

在这里插入图片描述

数据和行为审计阶段

受到污染的数据和恶意行为是影响模型性能的主要因素,如果将数据和行为审计阶段的风险降到最低,则中毒攻击的概率就会降低。

威胁模型

在FL中,每个worker的数据是可用但是不可见的,使得worker对自己的数据拥有绝对的控制权,这使得Server很难对所有本地worker的数据质量和历史行为进行审核。

因此,一个恶意的worker可以修改训练数据,或在数据收集、传输和处理过程中,可能出现未标记、有噪声或不完整等数据质量问题,这些问题可能会对基于数据的决策产生重大影响。

攻击

数据和行为审计阶段是保证FL可信度的第一道防线。在这个阶段,attacker可以通过社会工程、渗透攻击、后门攻击和APT攻击对数据和系统造成破坏。内部worker还可以直接破坏核心数据和系统。数据收集和传输阶段的无意错误,以及环境因素,也会对后续的数据分析产生一定影响。

防御

确保FL可信度的一种方法是审计worker的数据质量。高置信度的数据可以有效减少中毒攻击的发生,提高模型的有效性。其他方法是评估worker和Server的历史行为,应提出基于系统日志的可信度度量和可信度验证方法。

此外,在训练过程中也应该动态评估worker的可信度,一般来说,恶意的worker的行为通常与最受信任的worker不同,通过审计上传到Server的行为,可以剔除不受信任的worker。

训练阶段

恶意的worker可以操纵自己的数据、模型和参数,从而损害全局模型的性能。在模型更新的上传和下载过程中,模型可能会被通信通道中的attacker窃听,导致模型更新被篡改或窃取,因此有必要对模型更新之间的传输进行保护。

隐私推理攻击(Privacy inference attacks)

隐私泄露的原因
嵌入层泄露

深度学习模型在学习具有稀疏离散输入空间的非数字数据时,会首先将词汇表V中的单词转换成one-hot向量,嵌入层的参数可以表示成矩阵 W e m b ∈ R ∣ V × d ∣ \\W_{emb}\in\R^{|V\times d|} WembRV×d,其中 ∣ V ∣ |V| V表示词汇的数量,d 表示嵌入层的维度。

对于特定的文本,嵌入层的梯度更新仅取决于文中出现的单词,其他单词对应的更新梯度为0,这样attacker可以直接推断出worker在FL中训练期间使用了哪些单词。

FC层的泄露

全连接层(FC)层通常是深度学习模型中不可或缺的部分,主要功能是将分布式特征映射到样本标签空间。常规分类任务中,深度学习模型一般以FC层结束,在softmax使用后,通过交叉熵计算损失。根据正确的标签,梯度的符号是负的,否则是正的,因此可以通过共享梯度推出标签值。此外,无论在神经网络的位置,全连接层的输入总是可以用梯度计算出来。

梯度模型的泄露

使用梯度可以确定是否使用了准确的样本进行训练,还原样本的属性,甚至完全恢复原始训练数据。

威胁模型
Server-side攻击

可以假定一个诚实或者恶意的Server,Server知道的信息包括全局模型的结构,权重和worker在每次迭代的梯度,通常认为attacker拥有无限的计算资源。

窃听攻击

位于Server和worker之间的通信信道可能被attacker发起窃听攻击,每次通信中,attacker可能窃取或篡改一些有意义的信息,比如模型权重或梯度。

Worker-side攻击

可以假设K个worker ( K ≥ 2 ) (K\ge 2) (K2)

当K=2时,其中一个worker是attacker,其目标是窃取另一个worker的训练数据信息,这种情况下,attacker可以访问目标worker的模型结构、权重和梯度,就像服务端对手一样。

当K>2时,存在既不是attacker也不是victim的worker,这种情况对手无法准确获取目标受害者的梯度,这样增加了攻击难度。

攻击

根据不同的推断目标,隐私推断攻击可以归纳为成员推断攻击、类代表推断攻击、属性推断攻击和数据重构攻击。

成员推断攻击

目标是确定是否使用了准确的样本来训练网络。attacker可以进行被动攻击和主动攻击,被动攻击一般只窃听更新的模型参数来进行推断,而主动攻击可以篡改训练数据,欺骗其他worker暴露隐私。一种方式是attacker共享恶意的更新,诱导FL全局模型透露出更多关于其他worker的本地数据信息。

类代表性推断攻击

目的是获取目标标签的原始样本。深度学习中有一种内部的主动推理攻击,叫做生成对抗网络攻击,实验表明,任何使用这种方法的恶意worker都可以从其他worker那里推断出隐私,然而实验中所有worker都是相似的,并且attacker知道victim的数据标签。

属性推断攻击

目标是推断其他worker训练数据的特征。被动攻击attacker只能观察模型更新,训练目标属性的0-1属性分类器来进行推断,主动攻击可以欺骗FL模型,更好分离有目标属性和没有目标属性的数据,从而窃取更多信息。

数据重构攻击

目的是精确的重构训练样本或训练期间使用的标签。

防御
压缩梯度

梯度的可压缩性和稀疏性被认为是减少通信和计算开销的方法之一。这种方法可以转移到FL隐私保护,因为它们减少了隐私推断的信息员,可以成功地防止深度泄露。

密码学梯度

FL经常使用同态加密和安全多方计算。同态加密不会改变原始数据信息,可以保证模型收敛过程中不存在性能损失。

同态加密算法:
A ′ = e k ( A ) B ′ = e k ( B ) C ′ = A ′ + B ′ 则  C = d ( C ′ )  且  C = A + B A'=e_k(A)\\ B'=e_k(B)\\ C'=A'+B'\\ 则\ C=d(C')\ 且\ C=A+B A=ek(A)B=ek(B)C=A+B C=d(C)  C=A+B
但是它也消耗计算和通信,这点限制了它的应用。

中毒攻击(Poisoning attacks)

这种攻击发生在对抗FL的训练阶段。一方面,attacker可以削弱全局模型在没有标签的任务上的性能,另一方面,可以在全局模型注入后门。一般来说中毒攻击分为数据中毒和模型中毒两种,以及针对性的攻击(后门攻击)和无针对性的攻击(拜占庭攻击)。

威胁模型

attacker可以操纵一些worker参与FL的训练过程,并修改模型更新。修改内容有数据特征、标签、模型参数或梯度。

攻击
数据中毒和模型中毒攻击

数据中毒攻击主要改变训练数据集,通过添加噪声或翻转标签改变数据。

模型中毒攻击目的是任意操纵模型更新,导致全局模型偏离正常模型,导致模型性能下降或在最终的全局模型中留下后门。

拜占庭式和后门式攻击

拜占庭攻击的目标式导致全局模型的失败。

后门攻击目的是使模型在某一特定任务中失败,而正常任务不受影响,可以说后门攻击是一种有针对性的中毒攻击。

后门攻击者改变特定的特征,只有特定的样本才能触发后门任务,所以只有知道如何触发后门任务的attacker才能发起攻击。

防御

中毒攻击有两种防御方法,即鲁棒性聚合和差分隐私。

鲁棒性聚合

Server可以使用验证数据集独立验证全局模型的性能,还可以通过检查恶意worker的更新是否与其他worker的更新在统计上有差异。

  • Trim-mean:这是独立选择模型的各个参数,剔除最大值和最小值,计算出平均值作为参数的聚合值。
  • Median:在参数中独立选取中值作为聚合结果的全局模型。
  • Krum:在m个局部模型中选取最接近(余弦相似度)其他局部模型的一个局部模型作为全局模型。
差分隐私

在全局模型中加入具有较小标准差的高斯噪声以减轻威胁。

预测阶段

不管worker是否参与训练,他们最终都会部署到Server,在这个阶段,规避攻击和隐私推断攻击频繁发生。规避攻击通常不会改变目标模型,而是欺骗模型产生错误预测。隐私推断攻击可以重构模型和原始数据的特征。这些攻击的有效性取决于attacker知道的信息量。

规避攻击(Evasion attacks)

目的使通过构造特定样本来欺骗目标模型。通常,添加到输入样本中的细微噪声无法被检测到,导致模型给不出正确的分类结果。比如在一张猫的照片中添加了一些噪音,这种攻击使得原本应当识别为猫的机器将其识别为了狗。

威胁模型

攻击可以分为白盒和黑盒攻击。在白盒攻击下,attacker对目标模型有完整的了解,包括神经网络结构、模型参数和输出。相比之下,在黑盒攻击下,attacker不知道这些信息,可以根据目标模型的查询结果来实现攻击。

攻击

主要研究方向使设计对抗性例子,突破模型的鲁棒性。

在计算机视觉中

图像数据是连续的,像素值的微小变化就会引起图像数据的扰动,而这种扰动很难被人类检测出来。

白盒攻击主要基于优化、梯度、分类超平面等。对于基于优化的方法,如何找到最小可能的攻击干扰是一个优化问题。对于梯度方法,核心思想是在梯度方向上对输入样本进行修改。对于基于分类超平面的方法,目的是找到欺骗深度网络的最小干扰。

在自然语言处理中

文本数据是离散的,因此沿梯度方向进行干扰是一项挑战。文本数据的对抗性例子可以是字符、单词和句子级别的。

防御
经验主义防御( Empirical defense)

图像预处理和特征变换可以防御规避攻击,但是这些方法在attacker知道防御方法的情况下几乎无效。通过隐藏信息来提高模型安全性的手段有模型融合、梯度掩码和随机化。为了提高模型的鲁棒性,防御者生成attacker的样本,并将其与原始样本混合来训练模型,但可能会导致过拟合使得泛化性能下降。

认证防御( Certifed defense)

随机平滑是未来鲁棒对抗研究的一个很有前景的方向。

隐私推理攻击(Privacy inference attacks)

威胁模型

在模型预测阶段,attacker可能不知道模型的参数,只拥有查询模型的权限,使得攻防方法难以使用。

攻击
模型反演

主要是利用机器学习系统提供的一些API来获取模型的初步信息,就可以对模型进行分析,获得原始数据的相关信息。

成员推理

目的是测试一个特定的样本是否属于训练数据集。

模型提取

对手通过重复查询获取到模型的相关信息,模拟出目标模型的决策边界,从而获取模型的参数。

防御

可以通过模型结构防御(如降低模型对训练样本的敏感性和模型的过拟合)、信息混淆防御(如混淆模型的输出)和查询控制防御(如控制查询频率)。

结论

联邦学习(FL)作为一种解决数据竖井问题的方法,存在引发数据隐私和模型鲁棒性的危险。我们根据FL工作的多个阶段(数据和行为审计阶段、训练阶段和预测极端)提供了FL的分类。最后,我们得出结论FL在隐私增强技术中是有前景的,但仍然面临分布式特性带来的安全和隐私问题,我们应当考虑FL执行所有阶段中存在的威胁。

  • 3
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rebibabo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值