汽车理论动力性仿真-MATLAB

文章通过MATLAB进行汽车动力性的仿真计算,包括最高车速、加速度和爬坡度的分析。在一档时,汽车具有最大加速度和爬坡度;而五档通常对应最高车速。这些结果展示了不同档位对车辆性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

汽车动力性是指汽车在良好路面上直线行驶时,由汽车受到的纵向外力决定的、所能达到的平均行驶速度。汽车动力性评价指标主要有汽车的最高车速、加速时间和最大爬坡度。

一、汽车动力性仿真参数

1.汽车基本参数:

汽车总质量m/kg 滾动阻力系数 f f f 空气阻力系数 C D C_D CD 迎风正面面积A/ m 2 m^2 m2 滚动半径r/ m m m 旋转质量换算系数 δ δ δ 传动效率 η t η_t ηt 主减速器传动比 i 0 i_0 i0 变速器各挡传动比 i g i_g ig
936 0.012 0.3 1.75 0.272 1.03+0.04* i g i_g ig 0.9 4.388 [3.416,1.894,1.280,1.000,0.757]

2.发动机转速与转矩的数据:

最低转速:800 r/min;最高转速:6800r/min。
已知转速与转矩数据如下表:

转速/(r/min) 1000 1500 2000 2500 3000 3500 4000 4500 5000
转矩/N • m 78.6 83.0 85.0 86. 6 87. 1 85.9 84.7 82.5 80. 5

利用上表的转速与转矩数据,在MATLAB中编写发动机转矩与转速关系曲线拟合程序如下:

n=[1000,1500,2000,2500,3000,3500,4000,4500,5000];
T=[78.6,83.0,85.0,86.6,87.1,85.9,84.7,82.5,80.5];
cftool;

程序运行后
拟合模型
在1中利用“X 数据”和“Y 数据”的下拉菜单读取转速数据n和转矩数据T;选择多项式函数,在2中选择拟合次数为3,拟合图窗口显示出拟合曲线图,在3中显示拟合公式的参数p1/p2/p3,根据该参数得到发动机转矩与转速的关系:

Ttq=(2.714e-10)*n.^3-(4.255e-06)*n.^2+0.01756*n+65.07

注:如已知该公式,在动力性仿真中直接使用,不必重新拟合。

二、驱动力-行驶阻力平衡图

1.驱动力-行驶阻力平衡图

1.1 MATLAB程序

n=800:10:6800;
Ttq=(2.714e-10)*n.^3-(4.255e-06)*n.^2+0.01756*n+65.07;
m=936;%质量
r=0.272;%滚动半径
nt=0.9;%传动效率
CD=0.3;%空气阻力系数
A=1.75;%迎风面积
f=0.012;%滚动阻力系数
i0=4.388;%主减速器传动比
ig=[3.416,1.894,1.28,1.00,0.757];%变速器各档传动比
g=9.8;%重力加速度
%汽车的基本参数
Ft1=Ttq*ig(1)*i0*nt/r;
Ft2=Ttq*ig(2)*i0*nt/r;
Ft3=Ttq*ig(3)*i0*nt/r;
Ft4=Ttq*ig(4)*i0*nt/r;
Ft5=Ttq*ig(5)*i0*nt/r;
%各档位的驱动力
ua1=0.377*r*n/
要绘制发动机的万有特性曲线,可以参考如下指南: 选择合适的图表类型来展示数据。对于发动机的万有特性曲线来说,通常会选择等高线图或者彩色填充的轮廓图。 收集必要的性能参数。这包括但不限于不同转速下的扭矩、功率以及燃油消耗率的数据点。这些信息可以从制造商提供的技术手册获取,也可以通过实际测量得到。 确定坐标轴代表的意义。一般情况下,横轴表示发动机的速度(rpm),纵轴则可能用来标识节气门开度或者是负荷百分比。 创建网格用于绘图。根据所拥有的速度范围和负荷比例构建一个二维网格,在这个基础上插入已知的数据点。 利用插值算法填补空白区域。为了使图形更加平滑连续,需要采用适当的数学模型对未知位置处的数值做出预测性的估算。 应用专业的工程绘图软件完成作图过程。像MATLAB, Python中的matplotlib库或是其他专门针对机械动力系统的仿真平台都可以胜任这项工作。 确保标注清楚所有的关键元素。除了基本的X-Y轴标签外,还要记得加入标题、单位说明、颜色条释义等内容帮助读者理解图像含义。 下面是一段Python代码示例,演示如何使用matplotlib和numpy包来简单地画出这样的曲线: ```python import numpy as np import matplotlib.pyplot as plt # 假设我们已经得到了一些样本数据 speed = np.linspace(start=1000, stop=6000, num=50) # 发动机转速 (RPM) load_ratio = np.linspace(start=0.2, stop=1.0, num=50) # 负荷比率 (%) # 创建假定的效率矩阵;真实情况应替换为从实验或文献获得的实际数据 efficiency_matrix = np.random.rand(len(speed), len(load_ratio)) # 绘制等高线图 plt.contourf(load_ratio, speed, efficiency_matrix, levels=15, cmap='viridis') plt.colorbar(label="Efficiency (%)") # 设置图表属性 plt.title('Engine Universal Characteristic Curve') plt.xlabel('Load Ratio (%)') plt.ylabel('Speed (RPM)') plt.show() ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值