【几何角度】最小二乘法 / 线性回归

先来一组对应关系:

一、使用\hat{y}=ax拟合。

1.1代数计算

拟合后误差为e=y-\hat{y},要找到一个a,使得 e^{2} 的和最小,计算 e^{2} ,用 f(a) 表示:

带入数据即可得到

易得f(a)最小时的a值。

1.2解超定方程组

用向量表示x和y:

则解得:

1.3几何意义

a为常数,故向量 \hat{y} 与向量 x 维数相同且共线。既然找到了一个最合适得a,那么就一定有误差向量 e=y-\hat{y} 与向量 \hat{y} 垂直,即  (ax)^{T}*(y-ax)=0 ,解得:

二、使用 \hat{y}=ax+b 拟合

2.1代数计算

拟合后误差为e=y-\hat{y},要找到一个a,b,使得 e^{2} 的和最小,计算 e^{2} ,表示为:

带入数据即可得到

求偏导易得f(a,b)最小时的a,b值。

2.2 解超定方程组

用向量表示x和y:

则可得:

解超定方程组得

2.3几何意义

角度一:将每个样本看成高维空间中的一个点,则每个样本都是一个点,在这里,由于每个样本的特征都要加上一个维度(即与1进行拼接,即截距项b)则样本组成的样本空间是二维空间中的一条平行于x轴的直线,经过参数矩阵 [a,b] 进行变换,此处变化到一维,即投影到一维,Y值是在这个一维直线上的一系列点,投影后的值与Y值的差值即为误差。

角度二:将每个特征看成n维空间中的一个向量。当只有一个特征时,特征向量与全1向量以及Y向量都是n维的(n代表样本的个数),特征向量与全1向量构成一个二维的平面,参数矩阵对这个空间进行变换,变换后的向量在这个平面上,他的维度为n,但与Y不一定重合(大概率是不重合的,因为n个方程2个未知数的方程大概率是无解的)。变换后的向量与Y的距离即为误差。训练过程是找到一个最合适的参数矩阵对特征向量和全1向量进行变换,使得到的变换后的向量与Y尽可能相近。其实就是找到Y向量在这个平面上的投影。

要想有最合适的a和b,就一定有误差向量 \varepsilon 模值最小,则一定会有y 在[1]向量和x向量的平面上的投影为\hat{y},即:

则可解得:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值