一文读懂2024年AI+教育行业发展!文末附AI教育行业发展研究报告

最近一直在关注AI方面相关信息,今天就把最近收集到的2024年AI+教育行业研究报告分享给大家:1份科大讯飞教育技术研究院的蓝皮书。不想下载看报告的,我也帮大家整理下精华部分。

01 智能教育发展蓝皮书

生成式人工智能教育应用

基于统计结果,“知识问答”“作文教学”“试题生成与解答”“口语对话“教学设计”5 类为国内教育大模型的高频功能:

①知识问答。 基于大模型能力对海量专业信息进行筛选和检索,能够自动回答使用者提出的问题,并利用有效的交互对话界面面向使用者提供专业能力的支持。

②作文教学。 大模型能够结合海量的作文教学数据,综合所学单元的具体要求,自动生成符合使用者需要的资源;通过交互式对话引导学生依据特定主题或指令帮助学生逐步构建思路等。

③试题生成与解答。 利用大模型不仅能够提升试题生成的情境适切性与内容的个性化,还能在试题答案解析中给予更为精准的启发辅导。

④口语对话。 能够为练习者创设真实、自然、完整的多轮口语对话练习环境,让练习者在各种模拟的、贴近真实情境的日常生活、学术或职业场景下练习,以此提高沟通技巧、加深语言技能的掌握和应用。

⑤教学设计。 能够获取教师输入的教学设计要求,通过调用模型能力并结合单元教学设计要求,了解教师教学意图;从知识库中检索与教学意图相关的知识信息,提供资源应用的来源参考;依据教学设计要求与教学意图相关的知识信息,生成教学设计内容。

在上述体系架构中,由基础支撑、模型能力、智能体平台、场景应用和模型评测五要素构成。

①基础支撑包括硬件设施、算法模型、行业通用数据、教育专属数据训练集等方面。其中,教育专属数据训练集是专门为教育领域设计和收集的数据集,这些数据集包含了已标记的高质量教育数据样本。

②在模型能力建设上,需要联动部署教育专有能力、AI引擎以及多样化的公共基础构件和公共服务 API等支持多类型通用场景的各类基础能力,以期实现高效协同、性能卓越的资源调度与能力发挥,推动各类资源的共享与高效利用,为用户提供更加智能、便捷的教育服务体验。

③智能体平台允许用户创建、配置和部署个性化智能体,以此满足各类教育场景下的不同需求。在教育大模型智能体平台的构成上,往往多集成支持教育智能体创建与管理的各类工具,包括教育智能体创建与编排、教育插件库、教育知识库等。

④当前教育大模型的实践应用已覆盖教学、学习、评价、科研、管理等多类教育教学领域。聚焦到具体的技术应用场景层面,又可大致分为智能检索场景、咨询答疑场景、创意增强场景、个性化支持与反馈场景和情感互动场景等。

⑤基于“可控、可信;安全、绿色;好用、高效”的教育大模型教学应用评测三项原则·,在结合教育实际应用需要的基础上,可从“专业能力+安全能力”两方面构建教育大模型的适应性评测框架,以推动教育大模型输出更符合教学需求的精准内容和对话响应,不断提升教育大模型的教育场景适应性能。

02 人工智能+教育行业研究报告

全球发展概况。 纵观全球AI+教育产业的发展历程,AI技术变革推动全球AI+教育发展,个性化数与学逐步成为现实政策方面,UNESCO及全球各国政府共同关注AI+教育的机遇及风险;社会方面,大模型技术的突破让全球公众及学术界对AI+教育产生极高关注;资本方面,全球资本长期关注AI+教育行业。在此浪潮之下,技术公司不断突破技术上限,拓展教育应用的想象空间;特殊教育、职业教育等领域教育公司积极引入AI功能,拓展AI惠及的人群类型。

中国发展背景。 目前我国在教育侧与技术侧的发展均为AI+教育提供了较为良好的软硬件基础,在此背景下AI技术的赋能将有望打破“不可能三角”挑战,实现教育过程中对个性化的追求。政策方面,我国已在AI+教育领域布局多年;资本方面,AI+教育相关投融资情况逐渐回暖,且投资轮次更加丰富;从用户角度,家长和成人学习者积极拥抱A技术在教育中的应用。B端AI+教育市场发展向好:2023年B端AI+教育市场规模约为213亿元,未来三年的增长预计保持超过20%的复合增长率。C端AI+教育市场空间广阔:2023年C端教育智能硬件市场规模约为512亿元Al贡献率约为11%;2023年C端在线教育市场规模2628亿元,AI贡献率约为7%。基础教育阶段应用成熟度最高,语言学习应用紧随其后。

中国产品应用实践。 当前,AI+教育产品服务模式均展现出相对稳定的态势,AI大模型的应用主要聚焦于功能层面的优化迭代与解决方案效果的提升。校内场景的AI+教育应用以软硬件一体装配、软件系统部署、单次服务购买为主要服务模式。典型玩家多数为原教育信息化厂商,科技厂商优先选择从新兴应用场景切入赛道。校外场景的AI+教育应用以嵌入学习工具APP及智能硬件中为主,学习机是主要搭载AI+教育的产品形态。

行业发展思考。 挖掘深度:关注知识学习本身以外,思维培养、个性发展、心理健康等多维度的发展。拓展宽度:拓宽AI技术在职业教育、企业培训等场景的应用,同时国内企业可基于教育或技术层面的考量选择不同的出海思路。保持思考:在关注与挖掘人工智能技术在教育领域发展前景的同时,我们还需要关注信息安全、过度依赖人工智能、模糊教育本质等问题的出现。

03 AIGC+教育行业研究报告

变迁变革。 从宏观层面来看,AIGC技术延伸扩展了人脑智能,并且降低了使用门槛,应用影响力随之无限泛化。具体到教育行业,部分基础工作被替代,社会人力结构和人才需求被重塑。AIGC技术与现代教育在教学内容、师资配置、交互方式等方面有着巧妙的吻合之处,彰显着技术落地的必要性。AI技术也由教学辅助发展到自适应学习,推动大规模因材施教逐步落地。这些共同推高了时代对AIGC+教育的瞩目,体现在资本投融资、各国政策监管、学术研究等多个方面。澳大利亚经历的观望一禁止一反思一放开的挣扎历程,代表了全球的态度变迁,即不断与时俱进、同时守正创新。

教育进化。 AIGC技术在知识量、信息获取和处理方面的强势能力,迫使教育界进一步反思现有的教育框架。在教学主体方面,AIGC带来人机协同教学和师资强化的期待,也引发AI挑战教师主体地位的思考在教学载体方面,AIGC有望赋能教师并实现规模化的因材施教,但也挑战传统学习模式和评价工具;在教学内容方面,高阶通识能力、跨学科复合能力的重要性被重提,并辅以AIGC技术素养要求;在学习主体方面,引发近乎科幻但并不遥远的哲学思辩:教育人类还是训练大模型,二者可能存在着广义上教育资源的竞争。

商业实践。 AIGC技术在教师、学生、管理者多角色中,在学术科研、备课规划、作业生成和批改、自主学习.辅助练习、测试评估的多场景中,都发挥着一定效力。从落地速度来看,表现为C端>B端>G端,成人教育>高等教育>K12>幼教,教师>学生>管理者。具体到细分场景中,师生应用的全流程闭环服务、兼具高难度与高天花板的AIGC学术科研都是潜在机会方向。从商业模式来看,当前,软件增值服务、硬件整体售卖、MaaS服务、AIGC技能培训是主要的商业模式,各厂商根据模型及算力、教育业务理解、教育数据等竞争要素的差异,在行业中分据而立。展望未来竞争态势,AIGC技术具有显著的资源密集和依赖特点,大力出奇迹的暴力美学路径已被行业所验证,未来格局仍会以有着多类型资源积累的大厂占据主要份额,创新企业可以依据特定场景深入理解而切入但若没有自主大模型仍然会受制于人。同时,通用大模型与教育垂类大模型的关系,正向着各司其职、融合发展的方向持续演化,未来可能呈现出通用大模型与N个专家模型多重组合的形态。

趋势前景。 在内容层面,基于神经网络技术的AIGC与素养发展具有天然相似的基因,企业可以发力C端小模型从而引领行业发展;在技术层面,大模型分析+多模态交互+Agent规划+具身智能行动,AGI完全体与教育场景深度适配;在福祉落地层面,教育各界需通力合作,努力克服机会、技能、资源的三大鸿沟;在人机协作层面,人机关系进入新历程,人机共育,生命循环,互为滋养,人类将与AI一起永无止境地学习、构建。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

### AI智能客服与智能会话 #### 定义与概念 AI智能客服指的是利用人工智能技术实现客户服务自动化的一种解决方案。这类系统可以理解并回应用户的查询,提供帮助和服务支持。其核心在于模拟人类对话过程中的交互行为,使得机器能够以自然的方式同客户交流。 #### 工作原理 智能客服的工作机制依赖于多种先进技术的支持: - **自然语言处理(NLP)**:这是指让计算机理解和生成人类使用的文字或语音的能力。通过对输入的信息进行语义分析、意图识别以及上下文管理等操作,智能客服得以解析用户的需求并向用户提供恰当的回答[^3]。 - **机器学习算法**:为了提高响应质量,智能客服还会采用监督式学习方法训练模型,使其可以从大量历史案例中学习最佳实践;同时也会运用强化学习不断优化自身的策略,在实际应用场景里做出更加合理的判断和建议[^1]。 - **知识库集成**:除了依靠内置逻辑外,很多先进的智能客服还连接着庞大的后台数据库作为支撑。当遇到复杂问题时,它们可以通过检索这些结构化信息源获取准确答案,并将其转化为易于被顾客接受的形式呈现出来。 #### 主要应用领域 随着技术进步,越来越多的企业开始部署AI驱动的聊天机器人来改善用户体验、降低运营成本并增强竞争力。以下是几个典型的应用场景: - **电子商务平台**:在线商店常常面临海量咨询请求的压力,而借助智能客服工具则可以在第一时间解答常见疑问,引导访客顺利完成购买流程; - **金融服务行业**:银行及其他金融机构也积极引入此类服务,用于账户查询、转账汇款指导等方面工作,既提高了效率又保障了安全性; - **电信运营商**:电话服务中心往往需要应对数以万计的日均来电量,此时拥有强大应变能力的人工智能助理无疑成为缓解人工坐席压力的有效手段之一。 ```python # 示例代码展示了一个简单的基于规则匹配的智能回复函数 def simple_chatbot_response(user_input): responses = { "你好": "您好!请问有什么可以帮助您的吗?", "再见": "感谢光临,祝您生活愉快!" } return responses.get(user_input.strip(), "抱歉,我不太明白您的意思") print(simple_chatbot_response("你好")) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值