交叉熵简介

交叉熵是一种衡量两个概率分布差异的方法,常用于机器学习和深度学习的损失函数。当模型预测分布接近真实分布时,交叉熵值较小,表明模型性能较好。在分类问题中,通过最小化交叉熵损失函数,可以优化模型以提高分类准确率。例如,在图像分类任务中,模型输出各类别的概率,交叉熵用于计算预测与实际标签的差距,以此驱动模型训练。
摘要由CSDN通过智能技术生成

交叉熵(Cross Entropy)是用来衡量两个概率分布之间的差异性的一种方法。在机器学习和深度学习中,交叉熵常常被用作损失函数,用来衡量模型预测的结果与真实结果之间的差距。

设有两个概率分布p和q,p表示真实的分布,q表示模型预测的分布,交叉熵的定义如下:

H ( p , q ) = − ∑ i = 1 n p i log ⁡ ( q i ) H(p,q)=-\sum_{i=1}^{n}p_i\log(q_i) H(p,q)=i=1npilog(qi)

其中, p i p_i pi表示真实分布中第i个事件发生的概率, q i q_i qi表示模型预测分布中第i个事件发生的概率。

交叉熵越小,表示模型预测的结果与真实结果越接近,反之则越不接近。因此,在机器学习中,我们通常将交叉熵作为损失函数,用来指导模型的优化。

以分类问题为例,假设有m个样本,每个样本有k个类别,用 y i j y_{ij} yij表示第i个样本属于第j个类别的概率(0≤ y i j y_{ij} yij≤1, ∑ j = 1 k y i j = 1 \sum_{j=1}^{k}y_{ij}=1 j=1kyij=1),用 t i j t_{ij} tij表示第i个样本的真实标签,如果第i个样本的真实标签是第j个类别,那么 t i j t_{ij} tij为1,否则为0。那么,模型的交叉熵损失函数可以表示为:

L = − 1 m ∑ i = 1 m ∑ j = 1 k t i j log ⁡ ( y i j ) L=-\frac{1}{m}\sum_{i=1}^{m}\sum_{j=1}^{k}t_{ij}\log(y_{ij}) L=m1i=1mj=1ktijlog(yij)

通过最小化交叉熵损失函数,我们可以训练出一个可以对输入进行有效分类的模型。

举例

交叉熵在机器学习中有广泛的应用,特别是在分类问题中。一个典型的例子是图像分类,假设我们有一张图片,我们需要将其分类到不同的类别中。我们可以使用神经网络模型进行分类,模型的输出是每个类别的概率。例如,我们将该图片分类为狗、猫或鸟的概率分别为0.6、0.3和0.1。我们可以使用交叉熵来计算模型输出和实际标签之间的差距。假设实际标签为狗,则交叉熵可以表示为:

H ( p , q ) = − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) ) H(p,q)=-\sum_{i=1}^{n}{p(x_i)log(q(x_i))} H(p,q)=i=1np(xi)log(q(xi))

其中, p ( x i ) p(x_i) p(xi)表示实际标签为狗的概率, q ( x i ) q(x_i) q(xi)表示模型预测为狗的概率。将实际标签代入上式,可以得到:

H ( p , q ) = − 1 l o g ( 0.6 ) − 0 l o g ( 0.3 ) − 0 ∗ l o g ( 0.1 ) = 0.51 H(p,q)=-1log(0.6)-0log(0.3)-0*log(0.1)=0.51 H(p,q)=1log(0.6)0log(0.3)0log(0.1)=0.51

可以看到,交叉熵值越小,表示模型预测结果与实际标签越接近。因此,我们可以使用交叉熵作为损失函数,通过优化模型参数来最小化交叉熵,从而提高模型分类准确率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我想要身体健康

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值