DeepSeek——推荐2025年潜在热点方向(时间序列预测)

最近压力太大,特别想发论文,问了一下deepseek有没有什么推荐的场景,他总结出如下场景,可我也做了10几个idea的尝试发现有大的提升真的很难了,要提升只有个别有略微提升(举例:ETT系列提升了,weather就提升不了,反之一样),所以我在想2025的方向究竟是CNN、transformer、MLP等等哪个可以做一下先驱性的工作,也期待能从CV或其他领域发现一些创新,大家可以看一下他的推荐,我最近再看以数据驱动的patch+backbone看看有没有搞头。下面是我的飞书链接可以互相探讨:

Docshttps://h1sy0ntasum.feishu.cn/wiki/PLGgw1VpCiI2GpkEe4Pc4SCPnkX?from=from_copylink

一、时间序列预测近期顶会论文推荐(2023-2024最新研究)

以下为近年顶会中值得关注的方向及代表性论文(附ArXiv链接,便于快速获取):

  1. Transformer改进方向

    1. 论文:《Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting》 (NeurIPS 2023)

    2. 亮点:提出自相关机制替代传统注意力,显著提升长期预测效率。

    3. 代码GitHub链接

  2. 扩散模型应用

    1. 论文:《Diffusion-based Time Series Imputation and Forecasting》 (ICLR 2024)

    2. 亮点:将扩散模型引入缺失值填补与预测联合任务,鲁棒性显著提升。

    3. 代码:AI4HealthUOL/SSSD: Repository for the paper: 'Diffusion-based Time Series Imputation and Forecasting with Structured State Space Models'

  3. 低资源学习

    1. 论文:《PromptCast: A New Prompt-based Learning Paradigm for Time Series Forecasting》 (KDD 2023)

    2. 亮点:基于Prompt的小样本学习框架,医疗领域数据验证有效。

    3. 代码kuazhangxiaoai/promptcast

  4. 因果推断结合

    1. 论文:《Causal Graph ODE for Counterfactual Time Series Prediction》 (AAAI 2024)

    2. 亮点:结合因果图与神经ODE,解决反事实推理问题。

    3. 代码:Jun-Kai-Zhang/CAG-ODE


二、2024-2025年易出成果的六大方向分析

  1. 多模态时序预测

    1. 优势:现实场景中多源数据(如传感器+视频)易获取,方法创新空间大。我没尝试过,可以试一试

    2. 关键点:设计轻量级跨模态对齐模块(如对比学习)。

    3. 推荐会议:KDD、WWW(侧重应用)、ICML(侧重理论)。

  2. 长期预测(LTSF)

    1. 热点方法:时序分解(Season-Trend分解)+稀疏化注意力机制。

    2. 数据建议:选用ETT、Electricity等公开长期数据集,对比实验中需包含Informer、Autoformer等基线。

  3. 低资源场景

    1. 小样本学习:Meta-learning + Prompt Tuning,医疗、金融领域易发顶会(如KDD、AAAI)。

    2. 迁移学习:预训练模型(如TS-TCC) + 领域适配,工业故障检测案例可投ICDM。

  4. 扩散模型

    1. 潜力方向:将连续时间扩散(如Score SDE)与离散时序结合,理论创新易中ICML/NeurIPS。

    2. 注意点:需设计高效采样策略,避免计算开销过大。

  5. 可解释性

    1. 方法:注意力可视化(如Temporal Saliency Maps) + 因果发现(如Granger因果)。

    2. 推荐会议:AAAI、IJCAI(偏应用)、ICML(偏理论)。

  6. 时空图网络

    1. 创新点:动态图结构学习(如自适应邻接矩阵)+ 时空解耦建模。

    2. 数据:交通领域PeMS数据集、能源电网数据。


三、投稿策略与实操建议

  1. 会议选择优先级

    1. 冲刺顶会:NeurIPS(10月截稿)、ICML(1月截稿)、KDD(2月截稿)。

    2. 保底选择:ICDM(7月截稿)、AAAI(9月截稿)。

    3. 注意:NeurIPS 2024将于2024年10月截稿,建议立即启动实验。

  2. 代码与实验

    1. 复现基线:使用PyTorch Forecasting、Darts等库快速对比主流模型(如TFT、N-Beats)。

    2. 创新捷径:在经典模型(如Informer)上改进1-2个模块(如分解层+扩散解码),实验部分需覆盖3种以上数据集。

  3. 写作技巧

    1. 故事线模板:发现现有方法缺陷(如长期预测的累积误差)→ 提出新模块(如分解+扩散联合建模)→ 理论证明(收敛性分析)→ 多场景验证。

    2. 可视化:绘制预测曲线对比图、注意力热力图、消融实验表格。


四、可复现的代码工具推荐

  1. 框架:PyTorch Lightning + WandB(实验管理)。

  2. 数据:公开数据集(UCI/Electricity/ETT) + 合成数据(用Gaussian Process生成)。

  3. 加速技巧:使用TSMixer(轻量CNN+MLP)快速验证idea,再迁移到Transformer架构。


总结

2024年最容易出成果的方向:多模态时序预测(应用性强)、扩散模型(理论新颖)、低资源学习(贴合实际需求)。建议选择1个方向,在现有SOTA模型上改进1-2个模块,搭配充分实验,3个月内可完成一篇顶会投稿。需密切关注ArXiv的最新预印本(如搜索“time series forecasting 2024”),避免重复工作。

### DeepSeek 使用教程概述 DeepSeek 是一款先进的AI工具,在2025因其卓越的中文理解和场景化解决能力而广受好评[^4]。对于希望利用这一强大工具提升工作效率的人士来说,掌握其使用方法至关重要。 #### 获取并安装模型文件 要开始使用 DeepSeek,需先了解如何获取模型文件。官方提供了不同规模版本供下载,包括但不限于 R1:1.5B 和 R1:7B 版本。这些预训练好的大型语言模型能够满足多样化的应用场景需求[^2]。 #### 部署方式介绍 针对不同的运行环境,有多种部署方案可供选择: - **本地部署**:适合个人开发者或小型团队测试用途; - **服务器端部署**:适用于生产环境中大规模应用的情况; 无论是哪种情况,都需要按照具体指导完成相应配置工作以确保顺利启动服务。 #### 进行推理操作 当成功搭建好平台之后,则可以着手准备实际的数据输入来进行预测分析了。这一步骤通常涉及到加载已有的数据集以及定义想要执行的任务类型(比如文本分类、问答系统等),最后调用相应的接口函数来获得预期的结果输出。 ```python from deepseek import load_model, predict model_path = "path/to/deepseek/model" loaded_model = load_model(model_path) input_data = ["example sentence"] result = predict(loaded_model, input_data) print(result) ``` 由于近期 Deepseek 的在线服务器访问存在较大压力,可能会遇到无法正常使用的问题。此时建议尝试通过离线模式或是第三方提供的API接口继续开展工作[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值