AI预测相关目录
AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容
最好有基础的python算法预测经验
- EEMD策略及踩坑
- VMD-CNN-LSTM时序预测
- 对双向LSTM等模型添加自注意力机制
- K折叠交叉验证
- optuna超参数优化框架
- 多任务学习-模型融合策略
- Transformer模型及Paddle实现
- 迁移学习在预测任务上的tensoflow2.0实现
- holt提取时序序列特征
- TCN时序预测及tf实现
- 注意力机制/多头注意力机制及其tensorflow实现
- 一文解析AI预测数据工程
- FITS:一个轻量级而又功能强大的时间序列分析模型
一、FITS简介
与现有的直接处理原始时域数据的模型不同,FITS的工作原理是,可以通过在复数频率域的插值来操纵时间序列,实现了与时间序列预测和异常检测任务的最先进模型相媲美的性能。
值得注意的是,FITS仅使用约10k个参数,使它非常适合边缘设备,并为各种应用场景提供了可能。
本质上,通过插值所提供的段的频率表示来产生一个扩展的时间序列段。
FITS的核心是一个复值线性层,精心设计来学习振幅缩放和相移,从而促进了在复频域内的插值;还包含了一个低通滤波器,时域变化剧烈的数据段对应了频率上的高频成分,低通滤波器的使用本质上是对时域上变化剧烈的