FITS:一个轻量级而又功能强大的时间序列分析模型

本文介绍了FITS,一种通过复数频率域插值进行时序预测的轻量级模型,拥有高效性能和低参数量。文章详细讲解了模型工作原理、流程以及其在频域处理的优势,展示了在边缘设备部署的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AI预测相关目录

AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容
最好有基础的python算法预测经验

  1. EEMD策略及踩坑
  2. VMD-CNN-LSTM时序预测
  3. 对双向LSTM等模型添加自注意力机制
  4. K折叠交叉验证
  5. optuna超参数优化框架
  6. 多任务学习-模型融合策略
  7. Transformer模型及Paddle实现
  8. 迁移学习在预测任务上的tensoflow2.0实现
  9. holt提取时序序列特征
  10. TCN时序预测及tf实现
  11. 注意力机制/多头注意力机制及其tensorflow实现
  12. 一文解析AI预测数据工程
  13. FITS:一个轻量级而又功能强大的时间序列分析模型


一、FITS简介

与现有的直接处理原始时域数据的模型不同,FITS的工作原理是,可以通过在复数频率域的插值来操纵时间序列,实现了与时间序列预测和异常检测任务的最先进模型相媲美的性能。

值得注意的是,FITS仅使用约10k个参数,使它非常适合边缘设备,并为各种应用场景提供了可能。

本质上,通过插值所提供的段的频率表示来产生一个扩展的时间序列段。
FITS的核心是一个复值线性层,精心设计来学习振幅缩放和相移,从而促进了在复频域内的插值;还包含了一个低通滤波器,时域变化剧烈的数据段对应了频率上的高频成分,低通滤波器的使用本质上是对时域上变化剧烈的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

写代码的中青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值