✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
随着现代工业的发展,各种设备和系统的故障诊断变得越来越重要。故障诊断是通过分析设备或系统的运行状态,准确地确定故障的原因和位置的过程。在过去的几十年里,许多故障诊断算法被提出和研究,其中一种被广泛应用的方法是基于深度置信网络-支持向量机(DBN-SVM)的故障诊断算法。
深度置信网络(Deep Belief Network,DBN)是一种由多个堆叠的限制玻尔兹曼机(Restricted Boltzmann Machine,RBM)组成的神经网络。DBN具有较强的非线性建模能力和高效的特征提取能力,能够从原始数据中学习到更高层次的抽象特征。支持向量机(Support Vector Machine,SVM)是一种监督学习算法,能够在高维空间中找到最优的超平面,用于分类和回归问题。
DBN-SVM故障诊断算法的流程如下:
-
数据预处理:收集设备或系统的运行数据,并进行预处理。预处理包括数据清洗、数据平滑、特征选择等步骤,以提高后续算法的准确性和效率。
-
特征提取:使用DBN对预处理后的数据进行特征提取。DBN通过逐层训练的方式,逐渐提取出数据的高层次特征表示。这些特征能够更好地描述设备或系统的运行状态,有助于故障诊断的准确性。
-
特征选择:从DBN提取的特征中选择最具区分度的特征。特征选择可以通过各种统计方法和机器学习算法实现,目的是减少特征维度,提高分类器的性能。
-
SVM训练:使用选择的特征作为输入,训练SVM分类器。SVM通过在特征空间中找到最优的超平面,将不同类别的样本分开。训练过程包括选择合适的核函数、优化超参数等步骤,以获得最佳的分类性能。
-
故障诊断:使用训练好的SVM分类器进行故障诊断。将设备或系统的运行数据输入到SVM分类器中,根据分类结果确定故障的原因和位置。分类结果可以是二分类(正常/异常)或多分类(不同类型的故障)。
-
算法评估:评估DBN-SVM算法的性能。使用测试数据集对算法进行评估,包括计算分类准确率、召回率、精确率等指标,以确定算法的可靠性和有效性。
DBN-SVM故障诊断算法的研究对于提高设备和系统的可靠性和稳定性具有重要意义。该算法能够从大量的运行数据中提取有用的特征,并通过SVM分类器实现准确的故障诊断。然而,该算法仍然存在一些挑战,如特征选择的准确性、SVM超参数的选择等。因此,未来的研究可以进一步改进和优化DBN-SVM算法,以提高故障诊断的准确性和效率。
总之,基于深度置信网络-支持向量机的故障诊断算法是一种有效的方法,能够在工业领域中应用于设备和系统的故障诊断。该算法通过特征提取和分类器训练实现准确的故障诊断,为设备维护和故障排除提供了有力的支持。随着技术的不断进步,DBN-SVM算法将进一步完善和应用于实际生产中,为工业领域的故障诊断带来更多的机遇和挑战。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] 程广凯.基于机理-数据融合的滚动轴承故障诊断方法研究[J].[2023-10-29].
[2] 朱代武,陈泽晖,刘豪.基于DBN-SVM的航班延误内在模式分析[J].航空计算技术, 2022, 52(1):5.
[3] 孙同敏.基于DBN-SVM的航空发动机健康状态评估方法[J].控制工程, 2021, 28(6):8.DOI:10.14107/j.cnki.kzgc.20200919.