【电力系统】考虑大规模电动汽车接入电网的双层优化调度策略Matlab复现

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

一、引言

随着新能源汽车的快速发展,大规模电动汽车接入电网成为必然趋势。电动汽车作为移动储能单元,其充电需求具有随机性、集中性和峰谷差异等特点,给电网运行带来了新的挑战,但也为电网调控提供了新的机遇。合理规划电动汽车的充电策略,不仅可以降低电网运营成本,还能有效提升电网的稳定性和可靠性。

本文针对大规模电动汽车接入电网的场景,提出了一种基于双层优化的调度策略,并利用Matlab进行仿真验证。该策略通过上下两层优化模型,分别考虑电网运行层面的经济性目标和用户侧的充电需求,实现充电策略的协同优化。

二、模型建立

2.1 电网运行层模型

电网运行层模型的目标是优化电网运行成本,包括发电成本、输电成本和备用成本等。模型的约束条件包括电力平衡约束、发电机出力约束、线路传输容量约束等。𝑚

𝑖𝑛∑𝑡=1𝑇∑𝑖=1𝑁𝐺𝐶𝑖(𝑃𝑖𝑡)+∑𝑡=1𝑇∑𝑙=1𝑁𝐿𝐶𝑙(𝑃𝑙𝑡)+∑𝑡=1𝑇𝐶𝑟(𝑅𝑡)

三、双层优化模型

基于上述电网运行层和用户侧模型,构建双层优化模型,以实现电动汽车充电策略的协同优化。

  • 上层模型: 考虑电网运行层面的经济性目标,优化电网运行成本,并根据优化结果确定各电动汽车的充电价格。

  • 下层模型: 考虑用户侧的充电需求和充电价格,优化各电动汽车的充电策略。

3.1 上层模型:

上层模型是一个混合整数线性规划问题,目标函数为电网运行成本最小化,约束条件为电网运行层面的约束条件。

3.2 下层模型:

下层模型是一个非线性规划问题,目标函数为用户侧充电成本最小化,约束条件为用户侧的约束条件。

四、Matlab复现

利用Matlab的优化工具箱,可以实现双层优化模型的求解。具体步骤如下:

  1. 定义模型参数: 包括发电机参数、线路参数、负荷参数、电动汽车参数等。

  2. 构建优化模型: 根据上述模型建立Matlab代码,定义目标函数、约束条件和决策变量。

  3. 调用优化工具箱: 利用Matlab的优化工具箱,如fmincon函数,求解优化模型。

  4. 结果分析: 分析优化结果,包括电网运行成本、电动汽车充电策略等,并进行可视化展示。

五、仿真结果

通过仿真实验,可以验证双层优化调度策略的有效性。以下是一些仿真结果:

  • 电网运行成本显著降低,说明该策略可以有效降低电网的运营成本。

  • 电动汽车充电策略合理,可以有效满足用户侧的充电需求,并降低用户的充电成本。

  • 电网运行稳定性得到提升,说明该策略可以有效控制电动汽车充电带来的负荷波动。

六、结论

本文针对大规模电动汽车接入电网的场景,提出了一种基于双层优化的调度策略,并利用Matlab进行仿真验证。该策略可以有效降低电网运行成本,满足用户侧的充电需求,并提升电网运行稳定性。未来可以进一步研究将该策略应用于实际电网,并考虑更复杂的因素,例如用户行为模型、电网安全性和可靠性等。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值