✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
一、引言
随着新能源汽车的快速发展,大规模电动汽车接入电网成为必然趋势。电动汽车作为移动储能单元,其充电需求具有随机性、集中性和峰谷差异等特点,给电网运行带来了新的挑战,但也为电网调控提供了新的机遇。合理规划电动汽车的充电策略,不仅可以降低电网运营成本,还能有效提升电网的稳定性和可靠性。
本文针对大规模电动汽车接入电网的场景,提出了一种基于双层优化的调度策略,并利用Matlab进行仿真验证。该策略通过上下两层优化模型,分别考虑电网运行层面的经济性目标和用户侧的充电需求,实现充电策略的协同优化。
二、模型建立
2.1 电网运行层模型
电网运行层模型的目标是优化电网运行成本,包括发电成本、输电成本和备用成本等。模型的约束条件包括电力平衡约束、发电机出力约束、线路传输容量约束等。𝑚
𝑖𝑛∑𝑡=1𝑇∑𝑖=1𝑁𝐺𝐶𝑖(𝑃𝑖𝑡)+∑𝑡=1𝑇∑𝑙=1𝑁𝐿𝐶𝑙(𝑃𝑙𝑡)+∑𝑡=1𝑇𝐶𝑟(𝑅𝑡)
三、双层优化模型
基于上述电网运行层和用户侧模型,构建双层优化模型,以实现电动汽车充电策略的协同优化。
-
上层模型: 考虑电网运行层面的经济性目标,优化电网运行成本,并根据优化结果确定各电动汽车的充电价格。
-
下层模型: 考虑用户侧的充电需求和充电价格,优化各电动汽车的充电策略。
3.1 上层模型:
上层模型是一个混合整数线性规划问题,目标函数为电网运行成本最小化,约束条件为电网运行层面的约束条件。
3.2 下层模型:
下层模型是一个非线性规划问题,目标函数为用户侧充电成本最小化,约束条件为用户侧的约束条件。
四、Matlab复现
利用Matlab的优化工具箱,可以实现双层优化模型的求解。具体步骤如下:
-
定义模型参数: 包括发电机参数、线路参数、负荷参数、电动汽车参数等。
-
构建优化模型: 根据上述模型建立Matlab代码,定义目标函数、约束条件和决策变量。
-
调用优化工具箱: 利用Matlab的优化工具箱,如
fmincon
函数,求解优化模型。 -
结果分析: 分析优化结果,包括电网运行成本、电动汽车充电策略等,并进行可视化展示。
五、仿真结果
通过仿真实验,可以验证双层优化调度策略的有效性。以下是一些仿真结果:
-
电网运行成本显著降低,说明该策略可以有效降低电网的运营成本。
-
电动汽车充电策略合理,可以有效满足用户侧的充电需求,并降低用户的充电成本。
-
电网运行稳定性得到提升,说明该策略可以有效控制电动汽车充电带来的负荷波动。
六、结论
本文针对大规模电动汽车接入电网的场景,提出了一种基于双层优化的调度策略,并利用Matlab进行仿真验证。该策略可以有效降低电网运行成本,满足用户侧的充电需求,并提升电网运行稳定性。未来可以进一步研究将该策略应用于实际电网,并考虑更复杂的因素,例如用户行为模型、电网安全性和可靠性等。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类