【无人机控制】基于Backstepping方法的无人机四电机滑模控制matlab仿真

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

摘要: 本文研究了基于Backstepping方法的无人机四电机滑模控制策略。针对四旋翼无人机系统非线性、强耦合和不确定性等特点,提出了一种结合Backstepping方法和滑模控制的鲁棒控制方案。该方案首先利用Backstepping方法设计了虚拟控制量,然后利用滑模控制技术处理系统的不确定性和外部扰动,最终实现了对无人机姿态和位置的精确跟踪控制。本文详细阐述了控制器的设计过程,并通过仿真实验验证了所提控制策略的有效性和鲁棒性。

关键词: 无人机,四旋翼,Backstepping,滑模控制,鲁棒控制

1. 引言

近年来,无人机技术得到了飞速发展,并在各个领域得到了广泛应用。然而,由于无人机系统本身的非线性、强耦合和不确定性(例如参数摄动、外界风扰等),其控制问题一直是研究的热点和难点。传统的PID控制在应对这些复杂情况时往往表现不足,因此寻求更鲁棒、更有效的控制策略至关重要。

滑模控制 (Sliding Mode Control, SMC) 是一种有效的非线性控制方法,具有对参数变化和外部扰动不敏感的优点,能够保证系统的鲁棒性和快速响应。然而,直接应用SMC可能会导致抖振问题。Backstepping方法是一种递归设计方法,能够系统地处理非线性系统,并具有良好的控制性能。将Backstepping方法与滑模控制相结合,可以有效地克服各自的缺点,并发挥各自的优势,成为解决无人机控制问题的有效途径。

本文针对四旋翼无人机系统,提出了一种基于Backstepping方法的滑模控制策略。该策略利用Backstepping方法设计虚拟控制量,并将其融入滑模控制器的设计中,从而有效地抑制了系统的不确定性和外部扰动,并减少了抖振现象。通过仿真实验验证了该控制策略的有效性和鲁棒性。

2. 系统建模

3. 仿真实验及结果分析

本文利用MATLAB/Simulink搭建仿真平台,对所设计的控制策略进行仿真验证。仿真结果表明,该控制策略能够有效地跟踪期望姿态和位置轨迹,并且对参数变化和外部扰动具有较强的鲁棒性。仿真中,我们考虑了不同强度的风扰以及参数摄动,结果显示系统仍然能够保持良好的稳定性和跟踪精度。

4. 结论

本文提出了一种基于Backstepping方法的无人机四电机滑模控制策略。该策略有效地结合了Backstepping方法的系统性设计和滑模控制的鲁棒性,实现了对无人机姿态和位置的精确跟踪控制。仿真实验验证了该控制策略的有效性和鲁棒性。未来的研究方向可以考虑更加复杂的模型,例如考虑电机动力学和更复杂的外部扰动,以及进一步优化控制策略以提高控制性能和减少抖振。 此外,针对实际工程

📣 部分代码

    beta1 = 6.0612;

    beta2 = 0.0122;

    b = 280.19;

    g = 9.8;

    Ix = 3.8278e-3; Iy = 3.8288e-3; Iz = 7.6566e-3; 

    Kfax = 5.567e-4; Kfay = 5.567e-4; Kfaz = 6.354e-4;

    Kftx = 5.567e-4; Kfty = 5.567e-4; Kftz = 6.354e-4; 

    Jr = 2.8385e-5;

    % System dynamics coefficients

    a1 = (Iy - Iz) / Ix;

    a2 = -Kfax / Ix;

    a3 = -Jr / Ix;

    a4 = (Iz - Ix) / Iy;

    a5 = -Kfay / Iy;

    a6 = Jr / Iy;

    a7 = (Ix - Iy) / Iz;

    a8 = -Kfaz / Iz;

    a9 = -Kftx / m;

    a10 = -Kfty / m;

    a11 = -Kftz / m;

    b1 = d / Ix;

    b2 = d / Iy;

    b3 = 1 / Iz;

    % Desired trajectory

    xd = [sin(t) cos(t) cos(t) -sin(t) 0.1*t 0.1 sin(t) cos(t) 2*t 2 3*t 3]';

    % Error variables and tuning parameters

    z = zeros(12, 1);

    alpha = [0.2285737, 0.2285737, 0.2285737, 0.2285737, 0.2285737, 0.2285737, 0.2285737, 0.2285737, 0.2285737, 0.2285737, 0.2285737, 0.2285737];

    xdd = [cos(t) -sin(t) -sin(t) -cos(t) 0.1 0 cos(t) -sin(t) 2 0 3 0];

    % Compute tracking errors

    for w = 1:2:11

        z(w) = xd(w) - x(w);

    end

    for q = 2:2:12

        z(q) = x(q) - xdd(q - 1) - alpha(q - 1) * z(q - 1); % Tune alpha parameters

    end

    % Control gains

    q1 = 0.1; q2 = 0.1; q3 = 0.1; q4 = 0.1; q5 = 0.1; q6 = 0.1;

    k1 = 0.1; k2 = 0.1; k3 = 0.1; k4 = 0.1; k5 = 0.1; k6 = 0.1;

    % Lyapunov-like functions

    V1 = z(1)^2 / 2; V3 = z(3)^2 / 2; V2 = (V1 + z(2)^2) / 2; V4 = (V3 + z(4)^2) / 2;

    % Control inputs

    U2 = 1 / b1 * (-q1 * sign(z(2)) - k1 * z(2) - a1 * x(4) * x(6) - a2 * x(2)^2 - a3 * ob * x(4) + xdd(2) + (xd(2) - x(2)));

    U3 = 1 / b2 * (-q2 * sign(z(4)) - k2 * z(4) - a4 * x(2) * x(6) - a5 * x(4)^2 - a6 * ob * x(2) + xdd(4) + (xd(4) - x(4)));

    U4 = 1 / b3 * (-q3 * sign(z(6)) - k3 * z(6) - a7 * x(2) * x(6) - a8 * x(6)^2 + xdd(6) + (xd(6) - x(6)));

    U1 = m / (cos(x(1)) * cos(x(3))) * (-q6 * sign(z(12)) - k6 * z(12) - a11 * x(12) + xdd(12) + (xd(12) - x(12)) + g); % x1 = phi, x3 = theta

    if U1 == 0

        Ux = 0; Uy = 0;

    else

        Ux = m / U1 * (-q4 * sign(z(8)) - k4 * z(8) - a9 * x(8) + xdd(8) + (xd(8) - x(8)));

        Uy = m / U1 * (-q5 * sign(z(10)) - k5 * z(10) - a10 * x(10) + xdd(10) + (xd(10) - x(10)));

    end

    % System dynamics

    dx1 = x(2);

    dx2 = a1 * x(4) * x(6) + a2 * (x(2)^2) + a3 * ob * x(4) + b1 * U2;

    dx3 = x(4);

    dx4 = a4 * x(2) * x(6) + a5 * (x(4)^2) + a6 * ob * x(2) + b2 * U3;

    dx5 = x(6);

    dx6 = a7 * x(2) * x(4) + a8 * (x(6)^2) + b3 * U4;

    dx7 = x(8);

    dx8 = a9 * x(8) + (Ux * (U1 / m));

    dx9 = x(10);

    dx10 = a10 * x(10) + (Uy * (U1 / m));

    dx11 = x(12);

    dx12 = a11 * x(12) + ((cos(x(1)) * cos(x(3)) * U1) / m) - g;

    %Rotor dynamics

    dx13 = b * V1 - beta0 - beta1 * x(13) - beta2 * x(13)^2; 

    dx14 = b * V2 - beta0 - beta1 * x(14) - beta2 * x(14)^2;

    dx15 = b * V1 - beta0 - beta1 * x(15) - beta2 * x(15)^2;

    dx16 = b * V1 - beta0 - beta1 * x(16) - beta2 * x(16)^2;

    % State vector

    dx = [dx1; dx2; dx3; dx4; dx5; dx6; dx7; dx8; dx9; dx10; dx11; dx12; dx13; dx14; dx15; dx16];

end

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值