【五模型时间序列预测对比】Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在数据驱动的时代,时间序列预测作为预测未来趋势的关键技术,广泛应用于金融市场波动分析、交通流量预估、能源消耗预测等多个领域。不同的预测模型各有千秋,本文将深入对比 Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN 这五种模型在时间序列预测任务中的表现,帮助大家清晰了解它们的特点与适用场景。

模型原理与特点

Transformer-LSTM

Transformer-LSTM 融合了 Transformer 强大的全局特征捕捉能力与 LSTM 处理长序列依赖的优势。LSTM 通过门控机制,能够有效解决传统循环神经网络(RNN)的梯度消失和梯度爆炸问题,记忆长序列中的关键信息。而 Transformer 基于注意力机制,能够打破序列长度的限制,快速捕捉序列中任意位置的依赖关系。两者结合后,在处理既有局部复杂模式,又需要全局视野的时间序列数据时,具备独特的潜力。例如在电力负荷预测中,既可以通过 LSTM 记忆每日用电的周期性规律,又能借助 Transformer 捕捉节假日等特殊时期对用电负荷的全局影响。

Transformer

Transformer 完全摒弃了循环结构,以多头注意力机制为核心。它通过计算输入序列中每个位置与其他所有位置的注意力权重,能够并行处理序列数据,大大提高了计算效率。这种机制使得 Transformer 在处理长序列时间数据时表现出色,能够精准捕捉长距离依赖关系。在自然语言处理的机器翻译任务中,Transformer 的优势已得到充分验证,而在时间序列预测领域,对于如股票价格长期走势预测这类需要分析大量历史数据、挖掘长距离依赖关系的场景,Transformer 也展现出强大的实力。

CNN-LSTM

CNN-LSTM 结合了卷积神经网络(CNN)的局部特征提取能力与 LSTM 的时序建模能力。CNN 通过卷积核在数据上滑动,能够自动提取时间序列中的局部特征,如趋势变化、周期性模式等。LSTM 则将 CNN 提取的特征按时间顺序进行处理,学习特征之间的时序依赖关系。在交通流量预测中,CNN 可以提取不同路段在某一时刻的交通状态特征,LSTM 再基于这些特征预测后续的流量变化,这种组合在处理具有空间和时间特性的时间序列数据时较为有效。

LSTM

LSTM 是一种特殊的 RNN,其独特的细胞状态和门控结构使其能够有效处理长序列数据中的长期依赖问题。遗忘门决定丢弃哪些历史信息,输入门控制新信息的输入,输出门则确定输出的信息。在语音识别、手写字符识别等领域,LSTM 都取得了良好的效果。在时间序列预测中,对于具有明显时间周期性和趋势性的数据,如每日气温变化、每月销售数据等,LSTM 能够较好地学习序列中的模式并进行预测。

CNN

CNN 主要通过卷积层、池化层和全连接层对数据进行处理。卷积层利用卷积核提取数据的局部特征,池化层则对特征进行降维,减少计算量并防止过拟合。在时间序列预测中,CNN 可以将时间序列数据看作是一维的图像数据,通过卷积操作提取数据中的局部模式和特征。例如在风速预测中,CNN 能够捕捉风速在短时间内的变化趋势等局部特征,适用于处理具有简单局部模式的时间序列数据。

⛳️ 运行结果

图片

图片

图片

图片

图片

图片

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值