基于大模型的智能员工助手将帮助金融机构提升工作效率、降低运营成本、增强决策支持能力、改善客户服务体验,并在快速变化的市场环境中保持竞争力,同时满足日益增长的监管合规要求,推动金融创新和服务模式的转型。
根据沙丘智库发布的《2024年金融业生成式AI技术应用跟踪报告》,当前员工办公助手、编码助手、投研助手、知识助手、智能文档助手等几乎已经成为金融机构在落地大模型时的“标配”,这些用例都可以视为基于大模型的数字员工,利用大模型强大的语言理解、文本生成、知识表示和推理等能力辅助员工提高工作效率,从而有精力创造更多价值。
沙丘智库长期跟踪调研大模型技术的发展,旨在帮助企业快速了解大模型最新、最全面的落地情况。通过研究多家金融机构基于大模型的数字员工建设实践,沙丘智库从中精选出5个具有代表性的案例(太平洋保险、北京银行、平安理财、鹏华基金、申万宏源)供其他金融机构进行参考。
▎案例1:太平洋保险基于大模型的数字劳动力建设实践
通过建设4个符合Agent形态的数字劳动力试点项目,太平洋保险验证了大模型对于劳动生产率提升有明确助力。
4个Agent形态数字劳动力分为两种,一种是作为助手辅助员工,包括车险在线理赔助手和审计数字劳动力;另一种是完全替代员工完成工作,包括寿险代理人培训员和健康险理赔审核员。
▎案例2:北京银行AIB金融智能应用平台赋能全行1万多名员工
为了进一步提高工作效率,提升“双客”服务质量,北京银行7个部门组建数字化转型 12 号敏捷工程敏捷团队,深度应用AIGC技术,打造AIB金融智能应用平台 。
AIB平台通过大模型、机器学习小模型、语义搜索等技术,打通行内业务系统、办公系统、数据系统、操作系统,整合全行80项大模型服务、7项GPT创作工具,以GPT对话方式,面向理财经理岗、大堂经理岗、客户经理岗、综合柜员岗、远程客服岗提供理财投顾策略、业务问题解答、组合金融资讯、客户营销话术、宏观政策研究、行业发展前瞻等实时在线支持。
AIB金融智能应用平台已面向全行10000多名员工开放,推出北银投顾、财报助手、智能客服、京客图谱、运营助手、 数币银行、京行研究首批7款智能应用,让员工能随时随地使用智能化工具,快速掌握岗位所需知识和技能,将专家能力赋能至每一位员工,全面提升业务专业化水平。
▎案例3:平安理财基于大模型的数字员工生态平台建设实践
平安理财构建基于金融行业大模型的数字员工生态平台,将信息、知识和行动三位一体,创新性的打造“Copilot”载体,解决人的学习和管理成本的能耗问题,实现全覆盖、全能型,通过AI+HI螺旋互驱迭代,实现业务的数字增强。
数字员工的定位不是取代人,而是成为每一个业务人员的数字助手,辅助业务人员完成工作。
相较于以往的数字员工,平安通过创新人机交互模式、创建价值驱动的AI生态、实行人格化数字员工管理三个方面的模式创新,实现全新的数字员工生态。
▎案例4:鹏华基金大模型企业超级助手实践
鹏华基金落地企业内部超级大脑和企业专项能力智慧助手的统一平台,通过AI智能体的构建,实现两个在公司垂直领域应用大模型的业务目标:
第一,建设企业内部超级大脑,实现问答模型信息获取,提升员工非结构化和结构化业务信息获取效率;
第二,建设企业专项能力智慧助手,将大模型服务无感嵌入到各个业务流程,提升业务操作效率和体验升级,达到降本增效的目标。
基于大模型,鹏华基金打造了“善”系列应用,包括善绘、善程、善问、善数、善行:
▎案例5:申万宏源智能研报降维服务
研报内容通常结构复杂、格式多样,且每日更新的数据量较大,专业人员人工提取关键信息的成本较高,而非专业人员要理解研报内容有一定困难,导致目前研报信息使用效率较低,研报价值无法充分发挥。
申万宏源证券基于传统算法与大模型训练相结合的方式,实现了研报自动化智能降维解读。目前,智能研报降维服务已在申万宏源证券的一站式服务平台上线,为MOT(关键事件管理系统)、公司详情、行业详情、经济解读、债券解读、配置策略、热门板块等多个场景提供支持。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。