【新进展】通过多智能体知识图谱推理实现科研自动化

一、背景

科学发现历来依赖于人类研究者对知识的积累、假设的提出与验证,但随着科学数据量的激增,传统研究方法在效率和个人知识局限性上逐渐显现不足,尤其是在多学科交叉领域中。人工智能(AI)的发展为科学研究带来了全新机遇,能够分析和综合大规模数据,揭示潜在模式与联系,从而加速科学发现。

SciAgents框架由麻省理工学院开发,通过多智能体系统结合大型语言模型(LLM)和本体知识图,自动化科学发现过程。该框架特别针对生物启发材料,旨在加速材料发现,通过揭示不同学科的新颖关系来推动科学进步。与传统方法不同,SciAgents可以通过智能体协同工作,将科学研究流程细分为多个步骤并自动执行,每个智能体如“本体学家”、“科学家1号”、“科学家2号”以及“评论家”等,各自承担生成、扩展、优化和批评分析的任务。通过本体知识图推理,SciAgents能够发现和利用不同科学概念间的隐含关系,为创新研究假设的提出和验证提供支持。

通过多智能体之间的协作,SciAgents实现了高效的假设生成和扩展,从知识图生成初步假设,到经过多轮扩展和批评性审查,使生成的研究假设既具备科学创新性,又在理论上可行。其结合生成式AI、知识图和多智能体系统,提供了一种突破传统科学发现局限的新方法,特别适用于大规模、多学科的科研探索。

二、具体方法细节

SciAgents的实现基于以下几个核心模块,具体见GitHub提供的代码和示例(https://github.com/lamm-mit/SciAgentsDiscovery):

图1:多智能体图推理系统的概述

图2:从初始关键词选择到最终文档的整个过程概述,遵循层级扩展策略,通过逐步优化和丰富数据进行回答,批判性建模、模拟和实验任务加以识别和修订

图3:SciAgents提供了一个生成式框架,展示了由输入数据、问题和上下文驱动的想法生成和推理的迭代过程

  1. 知识图构建与推理:通过GraphReasoning库构建本体知识图。仓库中的Jupyter Notebook提供了详细的代码示例,展示如何从科学文献中提取知识图,并通过随机路径或最短路径算法生成概念间的关系。这些知识图将科学概念和属性表示为节点和边,为研究假设提供数据支撑。

  2. 大型语言模型与多智能体系统:使用大型语言模型(如GPT-4)来生成、扩展和优化研究假设。系统分为多个角色智能体,如“规划者”、“本体学家”、“科学家1号”、“科学家2号”以及“评论家”等,每个智能体通过专门的指令集执行特定任务。

  • 规划者:制定完成科学发现任务的步骤。

  • 本体学家:定义和解释知识图中的科学概念。

  • 科学家1号与2号:基于知识图生成并扩展研究假设。

  • 评论家:评估假设的科学合理性,提出改进建议。

  1. API集成与工具使用:系统通过集成Semantic Scholar API和OpenAI API,实现科学文献的数据检索和研究假设新颖性分析。仓库中的代码示例展示了如何自动化检索现有科学文献,确保生成的假设具有创新性和可行性。

三、结果

GitHub中的多个Jupyter Notebook展示了SciAgents在生物启发材料研究中的应用实例。例如,通过选择“丝绸”和“高能耗”两个概念,系统生成了一个相关的知识图,展示了从丝绸的生物聚合物到其多功能性及其与蒲公英色素结合的关系,从而提出了一种新型复合材料的研究假设,旨在提升材料的光学和机械性能。

图4:本体知识图的可视化(左图为整体知识图,右图为子图),用于组织信息

SciAgents的结果表现出:

  1. 强大的知识推理能力:通过构建详细的知识图,系统能够从复杂的数据中发现隐藏的科学概念之间的新关联。

  2. 高效的假设生成和扩展:多智能体系统在自动生成初步研究假设后,还能根据批判性分析进行改进和完善,确保假设的创新性和科学合理性。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 知识图谱与智能体的关系及应用 知识图谱是一种结构化的语义知识库,用于描述现实世界中的实体及其之间的关系。它为智能体提供了丰富的背景知识和上下文支持,使得智能体能够在复杂环境中更好地理解和处理任务。 #### 1. 知识图谱对智能体的支持 知识图谱通过其强大的表示能力和推理能力,可以显著增强智能体的认知水平。具体来说: - **知识表示**:知识图谱采用 RDF/OWL 等标准形式化表达知识,这使智能体能够以统一的方式访问和操作数据[^1]。 - **推理能力**:借助 Fuseki 和 Jena 的推理引擎,智能体可以从已有的显式知识中推导出隐含的知识,从而提升决策的全面性和准确性。 ```python from rdflib import Graph, URIRef, Literal from rdflib.namespace import RDF, RDFS # 创建一个简单的RDF图 g = Graph() # 添加三元组 subject = URIRef('http://example.org/person') predicate = URIRef('http://xmlns.com/foaf/0.1/name') object_ = Literal('Alice') g.add((subject, predicate, object_)) # 查询图中的信息 for s, p, o in g.triples((None, None, None)): print(f"{s} {p} {o}") ``` 上述代码展示了如何使用 Python 中的 `rdflib` 库来创建并查询 RDF 图形数据,这是智能体可能用来加载和分析知识图谱的一种方式。 #### 2. 智能体在知识图谱上的应用 智能体可以通过多种途径利用知识图谱完成特定的任务: - **问答系统**:结合 gAnswer 或类似的工具,智能体可以根据用户的自然语言输入,在知识图谱上查找相关信息并给出精确的回答。 - **推荐系统**:通过对用户行为模式的学习以及知识图谱的内容匹配,智能体可向用户提供个性化的建议和服务。 - **自动化流程优化**:在工业领域或其他高精度需求场景下,智能体会依据知识图谱指导设备维护计划制定或者供应链管理策略调整等工作流改进措施。 #### 3. 实现方法论 要成功实现基于知识图谱驱动下的智能体解决方案,通常需要经历以下几个方面的工作: - 数据集成:将来自不同源的数据转换成兼容于目标知识图谱模型的形式; - 质量控制:确保录入到知识图谱里的每一条记录都经过严格验证,减少噪声干扰; - 功能开发:围绕业务实际需求设计相应的算法模块,比如路径寻找、相似度计算等高级特性; 综上所述,知识图谱不仅充当了智能体获取外界认知的重要媒介之一,而且还在促进这些数字化助手更加智能化的过程中扮演着不可或缺的角色。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值