千万不要为了节约成本而选择小模型,特别是开源模型

大模型和小模型是从功能上来区分的,而不是参数上

我们在工作的过程中,应该多多少少都遇到过这样的事情;那就是老板为了节省成本,然后找了一些不专业或者一些漏洞百出的工具给我们用;最后的结果就是成本没节约下来,然后还出了一大堆乱七八糟的事。

这可真的是羊肉没吃着,还惹了一身骚;成本没节约,最后还耽误时间,身心俱疲。

为什么不建议使用小模型?

首先声明一下,这里的小模型不是指参数体量小的模型,是指功能太差,无法满足业务场景的模型;更有甚者很多小企业老板会选择一些开源模型,自己部署,就为了省钱。

但他们却不知道,这里的“节省成本”并没有真正节省成本,反而大大地增加了成本。

使用小模型会面临着哪些问题?

使用小模型最大的问题就是,其性能不足,而且由于没有专业的团队维护,导致其会出现各种乱七八糟的问题。

以作者本人来说,公司最近的一个AIGC(AI生成内容)产品中,有一个文字生成视频的功能,这也是大模型应用中比较常见的一个功能。

然后使用的就是社区里的一个开源模型,而这种开源模型只能自己来部署,因此还专门买了算力机去部署。

而关于大模型的部署与运维,在前面的文章中也提到过,复杂性和工作量就不用细说了。

关于这个文字生成视频的功能,说句实话,浪费了大量时间和精力开发的产品,效果真的是一言难尽;而且,这个模型使用的还不是传统的类似sora这种真正的视频生成模型,而更像是生成一张图片,然后增加了动态的效果。

而且,不只是模型本身的效果问题,也是为了节约成本选择的算力机并不是知名企业提供的算力,而是找的一个不知名企业的算力云机器,结果就是性能差的要死;跑在上面的服务经常莫名其妙的被杀掉,系统莫名其妙的重启。

而这就间接导致了各种各样的莫名其妙的问题,然后就需要浪费大量的时间和精力去排查;看到这里有些人可能会说,知道是算力机不稳定,肯定先查算力机啊?

但事实上问题出现的表象和算力机一点关系都没有,甚至你会怀疑是不是自己代码写的有问题,亦或者是不是某个中间件出问题了。

而这种乱七八糟,奇奇怪怪的问题不但耽误大量的时间和精力,最重要的是它会让我们特别的烦躁;本来简简单单就能解决的问题,然后中间出现一堆莫名其妙的bug,耽误进度,更影响心情。

最重要的一点是什么?

人的时间和精力都是有限的,当你把大量的时间和精力浪费在一些乱七八糟的事情之上后,你的核心业务就会受到影响。

首先,使用小模型带来的各种各样的问题,直接导致你本来有半年的时间开发核心功能,结果被奇奇怪怪的bug耽误了一大半时间;然后核心功能可能就会被做的乱七八糟的,甚至是匆匆忙忙的上线。

然后,技术人员就不得不花大量的时间去四处救火,最后形成恶性循环。

在前面的文章中作者曾说过,大模型+小模型是现在企业开发的主流模式;这里说的大模型+小模型是指性能足够的前提下,而不是说你随便找一个根本无法满足业务需求的模型,不但如此还要花费大量的时间去运维,这就更不值得了。

在基于大模型开发上层应用的过程中,除了大模型服务商之外,对绝大部分企业来说,使用第三方模型是最好的选择。

一个稳定的模型能够给你节省大量的时间和精力,这时你就有更多的时间把核心业务处理好,这也是为什么很多大企业会把一些非核心业务外包出去的原因之一。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值