数字农业农村解决方案
本文主要介绍数字农业农村解决方案,涵盖建设背景、整体方案、农业产业互联网建设运营、核心产品等内容,旨在解决农业农村发展难题,推动农业数字化转型,实现乡村振兴。
1. 数字农业农村建设背景
1.1 发展现状
当前,我国数字农业农村发展面临诸多挑战。产业化程度低,产业附加值不高,“小、散、弱” 特征明显,生产、加工、销售一体化水平低 。数据方面,数据资源分散,获取能力弱,数字化水平不高,各信息系统未完全打通,缺乏统一规划与共享平台,农业大数据体系尚未成型。此外,大数据基础设施不完善,应用水平不足,新技术推广缓慢,农村管理效率较低。
1.2 政策背景
国家出台多项政策助力数字农业农村发展。《关于推进 “上云用数赋智” 行动培育新经济发展实施方案》提出搭平台、建生态、强化金融供给。《关于实施乡村振兴战略的意见》明确了 “三农” 工作总要求,推动农业高质量发展。《关于金融服务乡村振兴的指导意见》聚焦产业兴旺,支持农业产业化发展,推广新技术在农村金融领域的应用 。《数字农业农村发展规划 (2019 - 2025 年)》则对农业农村数据采集、数字化转型等提出具体建设要求。
2. 整体解决方案
2.1 建设目标
以农业云平台为重要基础设施,以大数据为关键生产要素,实现资源数字化、产业数字化、全局可视化、决策智能化,推动农业发展质量、效率、动力变革,打造数字经济样板。通过产业服务,如金融、农资、订单运营等打造平台生态,实现农产品销售溢价、农业大数据服务等目标 。
2.2 建设模式
ToB 端以农业产业互联网平台为核心,通过产业运营降本增效、推动产业升级,政府提供政策和资金支持;ToG 端以农业政务云平台为核心,政府购买服务或进行项目建设。同时,涵盖农业政务云、产业园数字化基础设施、农业数字引擎等建设内容,采用项目建设 + 产业运营的模式推进。
3. 农业产业互联网建设和运营方案
3.1 农业产业互联网概述
农业产业互联网是管理和运营农业产业资源的数字化载体,整合产业资源,构建新型运行机制,以合伙制经营推动农业标准化、规模化发展。它聚合产业生态,促进农业产业化,为农业注入新要素,改变产业运行模式 。通过整合金融机构、农资企业等资源,构建产业联盟,推动农业全产业链线上一体化发展,提升全要素生产率。
3.2 应用场景
基于产业互联网运行规则构建产业联盟,完善 “农户 + 合作社 + 公司” 利益联结体制,促进产业链融合。全方位赋能基层组织,成为新型农业服务组织孵化器和专业合作社发展加速器。加快农业供给侧结构性改革,减少流通环节,调整价值分配,增加农民收入 。以数据服务解决农业普惠金融问题,通过线上线下数据为涉农主体画像,创新金融手段,降低风险,简化贷款流程。订单倒逼、服务引导促进农业生产提质增效,引导农民标准化、规模化生产,提升一产生产力。农业产业化撬动产业集聚、人才集聚,推动农业融合发展,吸引企业落户,强化人才支撑。支撑区域公用品牌建设,构建追溯和信用体系,共建共享品牌。平台支撑政府监管,构建信用体系,实现原产地保护和标准化种植,加强全链条监管。
4. 核心产品概述
4.1 数字农业农村业务框架
涵盖农业产业运营、农业金融、智慧种植等多个领域,包含农产品交易、质量追溯、数据中台等众多产品和场景。通过这些产品和场景,实现农业全领域、全流程数字化管理和服务 。
4.2 农业数字大脑
农业数字大脑包含多个关键平台,各平台协同工作。数据中台提供数据处理能力,汇聚多源数据,进行分类、采集、分析挖掘等操作,支撑各类业务应用。物联网平台实现全域设备接入,具备边缘计算能力,应用于病虫害监测、自动灌溉等多个系统,还包括智能仓储、冷链运输、智慧棚室等管理系统 。地理信息平台(GIS)提供空间数据处理和分析服务,遥感平台提供多源数据,助力农业生产决策。产业云图以可视化方式呈现农业农村各类信息,辅助决策。区块链平台实现农产品全生命周期追溯,打造安全可靠的质量和金融服务体系。AI 平台提供智能算法支持,惠农手机 APP 提供便捷服务入口,决策指挥平台提升产业调控和应急反应能力。
4.3 产业管理
产业管理包括生产经营主体管理、生产要素管理、生产经营行为管理等方面。生产经营主体管理涉及农户、合作社、企业等主体的信息管理和业务办理;生产要素管理涵盖植保、农田、环境等要素的管理和优化;生产经营行为管理包括畜牧、食品质量、项目等方面的管理和监督 。通过产业管理,提升生产主体内部管理效率,合理配置生产要素,加强产业动态管理。
4.3 产业要素管理
4.4 生产经营行为管理
4.5 产业服务
产业服务通过农业项目申报、补贴、技术推广等服务平台,为农业产业提供全方位支持。品牌建设服务打造名优产品信息服务门户和电商交易平台,推动农产品销售和品牌发展 。电商交易平台提供多样化交易模式,满足企业销售需求。
数字农业农村解决方案针对农业农村发展痛点,借助政策东风,通过完善的建设运营方案和丰富的核心产品,为实现农业现代化、乡村振兴提供了有力支撑,有望推动我国农业农村在数字时代实现高质量发展。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。