Nature Machine Intelligence 嵌入式大语言模型使机器人能够在不可预测的环境中完成复杂的任务

近期英国爱丁堡大学发表Nature Machine Intelligence研究工作,提出了一种名为**ELLMER(具身大型语言模型支持机器人)**的创新框架,通过整合大型语言模型(如GPT-4)、检索增强生成(RAG)、视觉和力反馈,使机器人能够在动态环境中完成复杂的长期任务。

img

https://www.nature.com/articles/s42256-025-01005-x

为了让机器人执行高阶抽象指令(如“制作咖啡并装饰盘子”),通过分解任务、适应环境变化和实时反馈完成任务,该研究工作提出框架的核心组件包括:

  • 大型语言模型(LLM)

    :GPT-4用于理解指令并生成任务计划。

  • 检索增强生成(RAG)

    :从知识库中动态检索相关代码示例,增强生成代码的准确性和适应性。

  • 视觉模块

    :检测物体姿态(如杯子的位置)。

  • 力反馈模块

    :调整动作的力度(如倒水的精确控制)。

  • 机器人控制系统

    :通过ROS(机器人操作系统)执行生成的代码。

img

2. 实现步骤

(1)指令解析与任务分解

输入:用户的高阶自然语言指令(如“我累了,请给我一杯热饮”)。

LLM处理:GPT-4将指令分解为子任务序列(如找杯子、倒咖啡、倒水等)。

知识库检索:通过RAG从预定义的代码库中检索相关动作示例(如“如何倒水”)。

(2)代码生成与执行

视觉反馈:Azure Kinect相机检测物体姿态,实时更新目标位置。

力反馈:ATI力传感器监控末端执行器的力,调整动作(如倒水时控制流量)。

动态代码生成:LLM结合检索到的示例生成可执行的Python代码,适配当前环境(如杯子的位置)。

反馈集成:任务执行与适应性调整。ROS控制:生成的代码通过ROS发送控制指令,驱动机械臂执行动作。动态调整:若环境变化(如杯子被移动),视觉模块更新姿态,LLM重新规划路径。

img

3. 关键技术细节

RAG的应用:知识库构建:包含已验证的代码示例(如开门、倒水、绘图),每个示例标注了适用场景和不确定性。语义检索:根据任务相似度检索最相关的示例,避免LLM的“幻觉”错误。

示例:当需要“倒水”时,检索并调整参数(如容器高度、流速)。视觉与力的融合:零样本物体检测:使用Grounded-Segment-Anything模型识别新物体。力控制:通过静力学模型估计倒水量(如力变化ΔF ≈ 流速Δm·g),确保精确操作。安全与边界

  • 速度与力限制:末端执行器速度限制为0.05 m/s,力限制为20N,防止过载。
  • 工作空间约束:机械臂活动范围限定在预设区域(如x∈[0,1.1]米)。

img

4. 实验结果
  • 任务成功率:在咖啡制作和盘子装饰任务中,ELLMER成功完成多步骤操作(如打开抽屉、倒水、绘图)。
  • 适应性:能处理动态干扰(如杯子移动),通过实时反馈调整动作。
  • 与基线对比:相比VoxPoser,ELLMER的忠实度(任务执行准确性)从0.74提升至0.88。
5. 创新与贡献
  • 具身认知的实践:将LLM的抽象推理与机器人感觉运动结合,模拟人类“手脑协同”能力。
  • 动态代码生成:通过RAG实现任务代码的灵活生成,无需预编程所有可能场景。
  • 多模态反馈闭环:视觉与力反馈的集成提高了复杂操作的鲁棒性。
6. 局限与未来方向
  • 局限性:视觉模块对遮挡敏感,复杂物体识别有待提升。动态任务切换能力有限(如中途更改任务目标)。
  • 未来方向:集成触觉传感器和软体机器人技术。优化动力学模型以处理高速动作(如快速倒水)。

总结

ELLMER框架通过LLM的规划能力、RAG的知识检索、多模态反馈的闭环控制,为机器人在动态环境中执行复杂任务提供了新思路。其核心在于将语言模型的“智能”与机器人的“身体”无缝结合,推动了具身智能的发展。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值