在工程设计领域,尤其是汽车设计领域的现状,指出传统设计流程存在效率低、耗时长等问题。例如,从概念草图到最终设计的实现往往需要数周甚至数月时间。
汽车设计是一个多学科的复杂过程,需要在工程性能和美学吸引力之间取得平衡。与飞机设计(主要关注功能性能和安全性)不同,汽车设计深受造型和品牌身份的影响,是一个兼具工程性和艺术性的过程。
https://arxiv.org/pdf/2503.23315
来自MIT的这篇论文提出一种新的方法,将AI设计代理(AI Design Agents)集成到概念设计阶段,利用人工智能、机器学习和自动化技术来自动化关键任务,从而加快从初始草图到完全模拟的气动评估的过渡。
汽车设计智能体
概念草图与风格增强
在汽车设计的最初阶段,概念草图是设计师们表达创意的重要方式。然而,手工绘制草图不仅速度慢,而且很难快速探索多种不同的设计风格。设计智能体利用最先进的视觉 - 语言模型(VLMs)和大型语言模型(LLMs),能够理解设计师用语言描述的设计意图。
设计师在概念设计阶段提供了一个旅行车的草图,并希望探索不同的风格选项。他们要求生成高质量的渲染图,基于以下风格提示:
- 未来感运动型汽车,具有侵略性的设计,空气动力学强,鲜艳的红色。
- 经典复古汽车,珍珠香槟色,镀铬细节,具有20世纪20年代的奢华风格。
- 粗糙的越野SUV,全地形车辆,哑光黑色,坚固且肌肉感十足的设计。
AI设计智能体中的样式智能体根据这些提示生成了高质量的渲染图,准确地展现了指定的美学风格。
3D形状检索与生成建模
当概念草图确定后,下一步就是将二维的草图转化为三维的汽车模型。这个过程在传统设计中非常复杂且耗时,需要专业的建模软件和大量的手动操作。但设计智能体通过几何深度学习技术,可以从庞大的数据库中快速检索出与目标草图相似的3D形状,并以此为基础进行生成建模。
它们能够自动调整模型的细节,确保最终的3D模型不仅外观美观,而且在结构上也符合工程要求,大大减少了人工建模的时间和工作量。
CFD网格划分与空气动力学模拟
空气动力学性能对于汽车的燃油效率、行驶稳定性和噪音控制等方面至关重要。在传统的设计流程中,进行计算流体动力学(CFD)模拟需要先对汽车模型进行复杂的网格划分,这是一个技术难度高且耗时的环节。设计智能体能够自动完成高质量的CFD网格划分,确保模拟的准确性。
而且,它们还能快速预测不同设计方案在空气动力学方面的表现,比如风阻系数、气流分布等。这意味着工程师和设计师可以在设计早期就对汽车的空气动力学性能进行优化,而不是等到模型制作完成后再进行漫长的测试和修改,从而节省了大量的时间和成本。
AI多智能体框架
系统整合了多种强大的AI技术,包括大型语言模型(LLMs)、视觉 - 语言模型(如Stable Diffusion XL和ControlNet),以及几何深度学习模型(如DeepSDF、PointNet、RegDGCNN和TripNet)。
样式智能体(Styling Agent):美学的魔法师
设计师们常常从一张简单的草图开始,但如何快速将这些草图变成令人眼前一亮的设计呢?这时候,样式智能体就登场了。
为了训练这个智能体,我们遇到了一个挑战:没有现成的汽车草图数据集。于是,我们采用了两种自动化方法来生成草图。一种是传统的计算机视觉方法,使用Canny边缘检测;另一种是利用预训练的生成式AI模型CLIPasso。
CAD智能体(CAD Agent):3D设计的宝藏猎人
当设计师有了初步的设计概念后,下一步就是将这些二维草图转化为三维模型。这时候,CAD智能体就派上用场了。它就像是一个3D设计的宝藏猎人,能够在DrivAerNet++数据库中快速检索出与草图相似的3D设计,或者直接生成新的形状。
网格划分智能体(Meshing Agent):CFD模拟的铺路者
在汽车设计中,空气动力学性能至关重要。为了评估设计的空气动力学性能,需要进行计算流体动力学(CFD)模拟。但传统的CFD模拟需要复杂的网格划分,这是一个技术难度高且耗时的环节。网格划分智能体就像是CFD模拟的铺路者,它能够自动为3D模型生成高质量的CFD网格,并评估网格质量。
实验效果
为了生成高质量的汽车设计,我们使用了Stable Diffusion XL(SDXL),这是一种能够根据文本提示生成逼真且富有艺术感的图像的潜扩散模型。
SDXL采用双阶段架构,基础模型用于粗略生成,而细化模型则用于高细节增强。通过ControlNet的引导,我们可以用Canny边缘图来指导生成过程,确保输出图像保持原始汽车设计的结构完整性。
从流程上看,我们从一个旅行车的二维草图开始,样式智能体(Styling Agent)生成了高分辨率的渲染图像。
接下来,CAD智能体从DrivAerNet++数据库中检索出最相似的设计,并进一步通过插值生成新的3D汽车形状。网格划分智能体(Meshing Agent)处理了生成的3D模型,生成了适合空气动力学模拟的高质量CFD网格。
最后,模拟智能体(Simulation Agent)通过从DrivAerNet++数据库中检索最相似的设计并获取相应的空气动力学性能数据,完成了实时空气动力学分析。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。