一次把 Langchain 的基本用法讲清楚

langchain 的各种花式写法实在是太多,直接看复杂代码让人头晕。文本基于 0.3 版本记录一下基础语法,重点是 ChatModel、PromptTemplate 和 OutputParser,以及如何通过这三种对象搭基础 RunnableSequence,进行一次完整的 LLM 调用。这种小功能单元是 Agent 系统的基础结构。

关于 langchain 的更多细节,可以参考官方网站: Introduction: https://python.langchain.com/docs/introduction/ LangChain Python API Reference https://python.langchain.com/api_reference/

【我基于的是最新的 v0.3,从该版本起,很多传统写法已废弃,详见 :Deprecations and Breaking Changes | ️ LangChain (https://python.langchain.com/docs/versions/v0_2/deprecations/)】

1. 开发环境

langchain 的核心是 langchain-core 和 langchain,如果用到一些社区功能,还要加上 langchain-community,搭建 Agent 用的是 langgraph。这些包可以先全部装上。

pip install langchain-core langchain langchain-community langgraph

2. 加载 LLM 模型

langchain 中的 LLM 是通过 API 来访问的,目前支持将近 80 种不同平台的 API

详见 Chat models | ️ LangChain https://python.langchain.com/docs/integrations/chat/

这些模型都是会话模型 ChatModel,因此命名都以前缀 Chat- 开始,比如 ChatOPenAI 和 ChatDeepSeek 等。这些模型分两种,一种由 langchain 官方提供,需要安装对应的依赖包(比如 langchain-openai),一种由社区提供,在 langchain-community 中实现。具体的安装和使用方式,可以从上面的链接中查看。

无论哪种模型,都需要配置密钥 api_key 和模型版本 model_name,以阿里云的百炼平台为例:

import os
# 通过环境变量配置密钥.
os.environ["DASHSCOPE_API_KEY"] = "自己的密钥"

from langchain_community.chat_models.tongyi import ChatTongyi
llm = ChatTongyi(model_name="qwen-max") # 也可以通过参数 api_key="..." 配置密钥.

# 调用模型.
llm.invoke("你好")

如果是由 langchain 提供的官方模型,还可以使用统一的初始化接口 init_chat_model:

from langchain.chat_models import init_chat_model

os.environ["OPENAI_API_KEY"] = "XXXXXXXXXXXXXXXXXX"
gpt_4o = init_chat_model("gpt-4o", model_provider="openai")

3. RunnableSequence

这里调用 llm 的方式是 Invoke(),这是 Runnable 对象的通用方法。在 langchain 里,几乎所有的核心功能类都是 Runnable 对象。Runnable 对象可以看作是一种“管道”或者“工作流”,它们拥有统一的调用接口,我们就不需要去记忆每种类型的入口函数到底叫什么名字,总之都是 invoke()。Runnable 对象的详细手册可以参看 Runnable interface | ️ LangChain,这里只介绍高频使用的:

  1. invoke:把输入转换为输出,即调用函数;
  2. batch:并行计算;
  3. stream:流式处理;

每一种 Runnable 对象,都已经预置了自身的输入类型和输出类型,即 invoke() 函数的输入和输出。可以通过成员函数 get_input_schema / get_input_jsonschema、get_output_schema / get_output_jsonschema、config_schema / get_config_jsonschema 查询。比如:

llm.get_input_jsonschema()

invoke、batch、stream,都有对应的异步版本 ainvoke、abatch、astream,大大减轻了开发工作量。只要开发了一个 Runnable 对象,就能轻松变成并行版 batch() 和异步版 ainvoke()。

多个 Runnable 可以顺序拼接成“链式”的 RunnableSequence,比如:

chain = llm | xxx | yyy | zzz

拼接成的 chain 也是 Runnable 对象,能 invoke(),能 batch(),能 stream()。这种写法叫做 LCEL(LangChain Expression Language),看习惯就好了。

4. 基础消息类型 Message

Messages | ️ LangChain https://python.langchain.com/docs/concepts/messages/

继续说回 llm.invoke()。这个函数返回的是一个 AIMessage 对象。Message 是langchain 中 ChatModel 的核心输入输出类型,根据 role 可以分为 SystemMessage、HumanMessage、AIMessage 和 ToolMessage。每种 Message 的核心是内部属性 content。

当直接给 llm 输入字符串时,默认解析为 HumanMessage 类型。这里有很多种花式写法,以下的四种等价:

from langchain_core.messages import HumanMessage

llm.invoke("你好呀")
llm.invoke(HumanMessage(content="你好呀"))
# 以下两种写法只支持列表
llm.invoke([{"role": "user", "content": "你好呀"})
llm.invoke([("user", "你好呀")])

如果要传入会话历史,就使用 Message 列表的形式:

from langchain_core.messages import SystemMessage, HumanMessage

messages = [SystemMessage(content="你是我的私人助理"), HumanMessage(content="你好呀")]
llm.invoke(messages)

5. 输入模板 PromptTemplate

Prompt Templates | ️ LangChain https://python.langchain.com/docs/concepts/prompt_templates/

5.1. 带占位的基础模板

实际调用 llm 时,每次请求需要在固定 prompt 中拼接用户定制项,这就需要 PromptTemplate 来实现。langchain 用的占位符是 {},和 Python 的 f-string 一样。

from langchain_core.prompts import PromptTemplate

# 模板定义.
prompt_template = PromptTemplate.from_template("今天是星期{day}")
# 返回类型.
# PromptTemplate(input_variables=['day'], template='今天是星期{day}')

PromptTemplate 的两个核心属性是 input_variables 和 template,因此也可以通过直接赋值来初始化:

prompt_template = PromptTemplate(template='今天是星期{day}', input_variables=['day'])

PromptTemplate 也是 Runnable 对象,因此也使用 invoke() 作为入口。输入是参数字典,输出是 StringPromptValue 对象:

prompt_template.invoke({"day": "三"})
# 返回类型.
# StringPromptValue(text='今天是星期三')

还有一种模板是 ChatPromptTemplate,可以处理 Message 列表:

from langchain_core.prompts import ChatPromptTemplate

prompt_template = ChatPromptTemplate([
    ("system", "你是我的私人助理"),
    ("user", "今天是星期{day}")
])
# 返回类型.
# ChatPromptTemplate(input_variables=['day'], messages=[SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=[], template='你是我的私人助理')), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['day'], template='今天是星期{day}'))])

从返回类型可以看到,ChatPromptTemplate 内部实际是一个 PromptTemplate 的列表。调用 invoke() 执行后,会转化为 ChatPromptValue,它的内部是 Message 列表:

prompt_template.invoke({"day": "三"})
# 返回类型.
# ChatPromptValue(messages=[SystemMessage(content='你是我的私人助理'), HumanMessage(content='今天是星期三')])

如果要在prompt中变动的一条完整 Message,可以使用消息占位符 MessagesPlaceholder,或者直接将 role 指定为 placeholder。两种写法等价:

from langchain_core.prompts import MessagesPlaceholder

# 第一种:使用 MessagesPlaceholder 占位.
prompt_template = ChatPromptTemplate([
    ("system", "你是我的私人助理"),
    MessagesPlaceholder("msgs")
])

# 第二种:直接使用 placeholder 作为消息的 role.
prompt_template = ChatPromptTemplate([
    ("system", "你是我的私人助理"),
    ("placeholder", "{msgs}")
])

# 返回类型.
# ChatPromptTemplate(input_variables=['msgs'], input_types={'msgs': typing.List[typing.Union[langchain_core.messages.ai.AIMessage, langchain_core.messages.human.HumanMessage, langchain_core.messages.chat.ChatMessage, langchain_core.messages.system.SystemMessage, langchain_core.messages.function.FunctionMessage, langchain_core.messages.tool.ToolMessage]]}, messages=[SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=[], template='你是我的私人助理')), MessagesPlaceholder(variable_name='msgs')])

ChatPromptTemplate 同样使用 invoke 接口来调用,注意占位符 msgs 对应的必须是列表:

# 第一种写法.
prompt_template.invoke({"msgs": [HumanMessage(content="你好!")]})
# 第二种写法.
prompt_template.invoke({"msgs": [("user", "你好!")]})
# 返回类型.
# ChatPromptValue(messages=[SystemMessage(content='你是我的私人助理'), HumanMessage(content='你好!')])

invoke 之后,ChatPromptTemplate 就转化成了 ChatPromptValue,也就是 Message 的列表。

5.2. Message拼接转模板

当两个 Message 使用 + 进行拼接时,会自动转换为 ChatPromptValue。因此,定义模板也可以直接往 Message 上去拼字符串。

# Message 直接拼接.
SystemMessage(content="你是我的私人助理") + HumanMessage(content="今天的天气不太好")
# 返回类型.
# ChatPromptTemplate(input_variables=[], messages=[SystemMessage(content='你是我的私人助理'), HumanMessage(content='今天的天气不太好')])
# 字符串拼接.
SystemMessage(content="你是我的私人助理") + "今天是星期{day}"
# 返回类型.
# ChatPromptTemplate(input_variables=['day'], messages=[SystemMessage(content='你是我的私人助理'), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['day'], template='今天是星期{day}'))])

5.3. 模板的部分格式化化

PromptTemplate 和 ChatPromptTemplate 的一个重要特点,是支持部分占位符的格式化。这一功能在复杂系统中尤其有用。比如,基类模板共有 a 和 b 两个占位符,派生模板 A 可以只使用 a,派生模板 B 可以只使用 b。部分格式化通过 partial() 来实现,先来看一个最简单的例子:

prompt_template = PromptTemplate.from_template("现在是 {year} 年 {month} 月")
# 输出.
# PromptTemplate(input_variables=['month', 'year'], template='现在是 {year} 年 {month} 月')
# 部分格式化.
partial_prompt = prompt_template.partial(year="2025")
# PromptTemplate(input_variables=['month'], partial_variables={'year': '2025'}, template='现在是 {year} 年 {month} 月')
在调用了 partial() 后,PromptTemplate 的 input_variables 由 ['month', 'year'] 减少到 ['month'],而 partial_variables 中增加了 {'year': '2025'}。

partial_prompt.invoke({"month": "3"})
# 输出.
# StringPromptValue(text='现在是 2025 年 3 月')

借着这个例子,介绍一些 langchain 中关于类型实例化的一种通用写法。比如上面的代码,当你看到输出内容是StringPromptValue(text=‘现在是 2025 年 3 月’),这往往就是该类型的是初始化方法,可以通过原命令直接构造。比如:

from langchain_core.prompt_values import StringPromptValue

# 构造.
StringPromptValue(text='现在是 2025 年 3 月')
# 输出. 一模一样.
# StringPromptValue(text='现在是 2025 年 3 月')

了解这种写法之后,看各种类型会觉得清晰一些。继续说回模板的部分参数化。如果不直接调用 partial(),而是直接做 partial_variables 的赋值,那么也可以将占位符指定为函数:

from datetime import datetime

def _get_datetime():
    now = datetime.now()
    return now.strftime("%m/%d/%Y, %H:%M:%S")

# 直接定义模板.
prompt_template = PromptTemplate(
    template="今天的日期是 {date},天气是 {wheather}",
    input_variables=["wheather"],
    partial_variables={"date": _get_datetime},
)
prompt_template.invoke({"wheather": "小雨"})
# 输出.
# StringPromptValue(text='今天的日期是 02/27/2025, 20:00:00,天气是 小雨')

6. 结构化输出 OutputParser

Output parsers | ️ LangChain https://python.langchain.com/docs/concepts/output_parsers/

前面已经介绍了prompt 和 model,剩下的就是 model 的输出解析。通常来说,模型返回的输出是一个 AIMessage 对象,本质上还是字符串文本。在构造应用时,常常需要对大模型的输出做结构化,比如转换为 JSON 或者 Enum,以便于下游使用。这时就需要 OutputParser 来支持。

每种数据类型有自己对应的 OutputParser,比如 JSON 对应着 JsonOutputParser。无论哪种类型,都有一个公共方法 get_format_instructions(),可以返回对应格式的约束描述(schema)。实际上,结构化输出有两个步骤:

在 prompt 中注入 get_format_instructions(),告诉 llm 要生成什么类型的结果; 在生成之后,进行对应格式的转化;

6.1. 生成格式约束

以图书信息为例子,首先要基于 pydantic 构造 schema:

from pydantic import BaseModel, Field

class Book(BaseModel):
    name: str = Field(description="书籍名称")
    year: int = Field(description="出版年份")

然后基于 schema,构造 OutputParser:

from langchain_core.output_parsers import JsonOutputParser

parser = JsonOutputParser(pydantic_object=Book)
parser.get_format_instructions()
# 输出
# 'The output should be formatted as a JSON instance that conforms to the JSON schema below.\n\nAs an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]}\nthe object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted.\n\nHere is the output schema:\n```\n{"properties": {"name": {"description": "书籍名称", "title": "Name", "type": "string"}, "year": {"description": "出版年份", "title": "Year", "type": "integer"}}, "required": ["name", "year"]}\n```'

调用 get_format_instructions() 后,我们得到了一个很长的字符串。仔细看,这是一段关于格式约束的 prompt,它要求模型生成 JSON,然后告诉模型什么是 schema,然后对目标 schema 做了字段提示。当然,如果你不使用 OutputParser,也完全可以自己给 llm 写这么一段 prompt。

有了这段格式约束,就可以通过 PromptTemplate 的 partial_variables 注入进总体 prompt 中去。比如:

prompt = PromptTemplate(
    template="请帮我从出版列表中解析图书的信息。\n{format_instructions}\n出版列表:{query}\n",
    input_variables=["query"],
    partial_variables={"format_instructions": parser.get_format_instructions()},
)

6.2. 生成结构解析

如果 llm 依从指令,生成了 JSON 格式的内容,就可以做下一步的结构化了:

response = "{\"name\": \"The World\", \"year\": 2025}"
parser.invoke(response)
# 输出.
# {'name': 'The World', 'year': 2025}

字符串的 response 就被转换成了 dict(也就是 JSON)。需要注意,这一步和前面定义的 schema 没有任何关系,只是单纯地做 JSON 转换。也就是说,只要是 JSON 字符串,无论是什么字段,都能转换成功。schema 只是用来生成格式约束来注入 prompt 中,并不参与生成后的格式解析。

6.3. 格式纠错

如果 llm 生成的结果不是标准 JSON ,比如缺了引号或者加了别的字,可以用带纠错的 OutputFixingParser 来修复。OutputFixingParser 在解析输入时,如果直接成功会直接返回结构化对象,如果不成功则调用 llm 做默认1次的修复。

from langchain.output_parsers import OutputFixingParser

bad_response = "json {'name': 'The World', 'year': 2025}"
fix_parser = OutputFixingParser.from_llm(parser=parser, llm=llm)
fix_parser.parse(bad_response)
# 输出.
# {'name': 'The World', 'year': 2025}

和普通的 OutputParser 一样,OutputFixingParser 也是 schema 无关的,它只是做「格式」的修复。

7. 链 chain

一次基本的大模型调用,prompt、model 和 parser 都有了,而且都是 Runnable 对象,那么就能串联成 chain:

chain = prompt | llm | parser
chain.invoke({"query": "xxxxxxxxxxxxxx"})

由于 prompt 是 chain 的入口,那么 chain.invoke() 的输入参数就和 prompt 一致;parser 是 chain 的出口,那么 chain.invoke() 的输出格式就和 parser 一致。

有了这三部分,就能实现大部分的基础 llm 调用。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值