OLMoE,首个“完全开源”MOE模型,干货满满

论文笔记分享,Allenai刚发的文章OLMoE:OpenMixture-of-ExpertsLanguageModels。另外今天有一个GPT-next的OAI的新闻,就一张图,没法编内容不发了。

完全开源系列:

  • Weights https://hf.co/allenai/OLMoE-1B-7B-0924

  • Data:https://hf.co/datasets/allenai/OLMoE-mix-0924

  • Code:https://github.com/allenai/OLMoE

  • Logs:https://wandb.ai/ai2-llm/olmoe/reports/OLMoE-1B-7B-0924–Vmlldzo4OTcyMjU3

  • paper: https://arxiv.org/pdf/2409.02060

正常的MOE结构,用到了qk norm

全文61页,细节满满,感兴趣的同学可以自己看。这里简单提一些有意思的点~

1B-7BMOE vs 1B / 7B dense起点更高,终点接近或超过7B全量全参dense的效果

更细粒度的专家组合可以得到更好的训练损失,但是收益递减。(这里提到了很多相关的研究,去做预测最优组合)

共享专家会消除模型的灵活性,让性能更差,与一些历史研究不符

确定哪些专家处理每个输入token ,有2种类型

  • EC,每个专家从输入序列中选择固定数量的token。(确保完美的负载平衡,但是不利于自回归的生成模式,也可能导致token丢失)

  • TC,每个token会选择固定数量的专家。)这可能会导致许多token选择同一位专家,从而损害训练效率)

相同的预算下,TC稳定优于EC

专家是从头初始化,还是从MLP复制得到。实验发现只需要几百B的token,从头开始的模型就赶上了复制的结果,从600B token之后优于复制的结果。

使用负载平衡损失也能带来更好的性能

路由z-loss可以提高MoE模型的稳定性和质量。这个辅助损失会惩罚进入门控网络的大logits

预训练的早期阶段路由就达到了饱和状态

训练结束后,通一层的专家之间不存在强协同激活,也就是说不同专家之间几乎没有冗余

专家对于特定领域和词汇的专业化程度区分度还是比较高的。某些专家可能专门处理一些科学相关的,(如arXiv数据集),而其他专家可能更擅长处理编程语言或一般文本。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 13
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
MOE模型中加入反馈可以帮助模型更好地适应数据和改进预测结果。一种常见的方法是在MOE模型中引入反馈回路,将模型的预测结果作为输入进行迭代训练。下面是一个简单的例子,展示如何在MOE模型中加入反馈回路: ```python import numpy as np from sklearn.datasets import make_regression from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import VotingRegressor # 创建一个示例回归数据集 X, y = make_regression(n_samples=1000, n_features=10, random_state=42) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建两个不同的专家模型 expert_model1 = LinearRegression() expert_model2 = DecisionTreeRegressor(max_depth=3) # 分别在训练集上训练两个专家模型 expert_model1.fit(X_train, y_train) expert_model2.fit(X_train, y_train) # 创建门控网络,用VotingRegressor作为门控网络 gate_model = VotingRegressor([('expert1', expert_model1), ('expert2', expert_model2)]) # 设置迭代次数和学习率 num_iterations = 5 learning_rate = 0.1 # 迭代训练模型 for i in range(num_iterations): # 在训练集上训练门控网络 gate_model.fit(X_train, y_train) # 使用门控网络进行预测 y_pred = gate_model.predict(X_train) # 计算预测结果与真实值之间的误差 error = y_train - y_pred # 更新专家模型的参数 expert_model1.fit(X_train, y_train - learning_rate * error) expert_model2.fit(X_train, y_train - learning_rate * error) # 在测试集上进行预测 y_pred = gate_model.predict(X_test) # 输出预测结果与真实值之间的均方误差(MSE) mse = np.mean((y_test - y_pred)**2) print("均方误差(MSE):", mse) ``` 在这个例子中,我们首先创建了一个示例的回归数据集,并将其划分为训练集和测试集。然后,我们创建了两个不同的专家模型(线性回归模型和决策树回归模型),并在训练集上训练这两个模型。接下来,我们创建了一个VotingRegressor作为门控网络,并使用两个专家模型作为其成员。然后,我们设置了迭代次数和学习率,并进行迭代训练。在每次迭代中,我们首先使用门控网络进行预测,并计算预测结果与真实值之间的误差。然后,我们使用误差来更新专家模型的参数,以使其能够更好地适应数据。最后,我们在测试集上进行预测,并计算预测结果与真实值之间的均方误差(MSE)作为模型性能的评估指标。通过迭代训练和反馈回路的引入,模型可以逐步改进预测结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值