今天给大家介绍一篇清华大学的时间序列预测最新工作,提出了统一的Transformer时序预测模型,能同时处理单变量和多变量时序预测,并将时序预测的上下文长度首次扩充到千级别。
论文标题:TIMER-XL: LONG-CONTEXT TRANSFORMERS FOR UNIFIED TIME SERIES FORECASTING
下载地址:https://arxiv.org/pdf/2410.04803v1
1.背景
构建类似NLP领域的统一大模型是时序预测领域近期研究的焦点。虽然前序已经涌现很多工作,但是这些建模方法只能处理最多几百长度的上下文序列,比如根据历史200个数据点预测未来时刻的序列值。而NLP中的建模可以利用千级别甚至万级别的上下文信息。历史序列长度的不足,导致时序预测模型无法根据完整的、长周期的历史信息进行预测,影响了预测效果。
为了解决上述问题,本文构建了基于Decoder-only Transformer模型的统一时间序列预测模型Timer-XL,可以同时处理单变量和多变量的时序预测,并同时建模变量间关系,对比其他SOTA模型实现了效果提升。
2.Next Token Prediction任务
类似NLP中的语言模型,Timer-XL使用了Next Token Prediction任务进行模型训练。在语言模型中,Next Token Prediction任务的目标是根据前面的token,预测下一个token是什么。在时间序列中,Time-XL将token定义为一个窗口内的时间序列,也就是一个patch作为一个token。优化的目标就变成了预测下一个patch的时间序列,以MSE为目标进行拟合。
上述方式只适用于单变量时间序列。为了扩展到多变量时间序列,Timer-XL采用了多元Next Token Prediction的建模方式。整体可以理解为,每个变量仍然独立的预测下一个token,但是会根据所有变量的历史序列来预测各个变量的下一个token,公式可以表示为如下形式:
通过这种多变量Next Token Prediction的扩展,模型可以同时建模序列关系和变量间关系,实现了从1D建模到2D建模的扩展。
3.模型结构
Timer-XL整体基于Transformer Decoder的模型结构,位置编码采用目前主流语言模型使用较多的RoPE。
其中一个核心问题是,引入多元Next Token Prediction任务后,如何构建attention。文中提出了TimeAttention模块,其基本思路也很简单,在预测每一个变量的值时,通过attention mask的方式让其只和各个变量该时刻之前的值进行attention。比如下图中预测A序列的第3个token的值,会和A、B的第一个时刻、第二个时刻的tokne计算attention。
此外,这种attention mask的方式也可以灵活引入变量间关系的建模。比如可以根据两个变量之间是否相互依赖,修改整个attention mask的构造方式,融合时间(序列)和空间(变量间)的关系。
4.实验效果
在实验部分,文中对比了和各类时序预测模型,包括统计模型、深度模型等SOTA方法的效果,本文的整体MSE都取得了较明显的下降。
实验部分也重点论证了Timer-XL的通用性,一个模型可以用于各类数据集,包括在训练数据内的数据集,以及非训练数据的数据集,有较强的泛化性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。