使用Llama 3.2-Vision大模型,搭建本地Ollama OCR应用

用Python和Ollama的Llama 3.2-Vision模型搭建自己的OCR应用。

光学字符识别技术,简称OCR,目前是数字化印刷文本和提取图像信息的核心手段,其重要性正日益凸显。如今,有了AI的加持,尤其是像Llama 3.2-Vision这样的模型,OCR变得更加强大。本文教会大家用Python和Ollama的Llama 3.2-Vision模型,一步步搭建起自己的OCR应用。

先决条件

在开始之前,先确保已准备好以下条件:

  • 一台安装了Windows、macOS或Linux的电脑。

  • 稳定的互联网连接,用于下载必要的包和模型。

  • 对Python编程的基本了解。

  • 系统上安装了Python(最好是3.7或更高版本)。

步骤1:安装Ollama

Ollama是一个能让你在本地运行多模态模型的平台。安装步骤如下:

  • 下载Ollama:访问Ollama官方网站,下载适合你操作系统的安装包。

  • 安装Ollama:根据安装向导完成安装过程。

步骤2:安装Llama 3.2-Vision模型

安装好Ollama后,你就可以通过在终端运行以下命令来安装Llama 3.2-Vision模型了:

ollama run llama3.2-vision   

此命令下载并设置模型以供本地使用。

步骤3:设置Python环境

现在已经安装了所有内容,为OCR项目设置一个Python环境:

  • 创建项目目录:建立一个新的文件夹来存放项目文件。在命令行中输入以下命令:
mkdir llama-ocr && cd llama-ocr   
  • 创建虚拟环境(这一步是可选的,但推荐):
`python -m venv venv   source venv/bin/activate  # 在Windows上使用 `venv\Scripts\activate`   `
  • 安装所需的库:为了处理图像和进行base64编码,我们需要安装一些库。使用pip安装以下库:
pip install requests Pillow   

步骤4:编写OCR脚本

现在编写使用Llama 3.2-Vision执行OCR的Python脚本。创建一个名为ollama_ocr.py的新文件,添加以下代码:

import base64   import requests   from PIL import Image      SYSTEM_PROMPT = """作为OCR助手。分析提供的图像并:   1. 尽可能准确地识别图像中所有可见的文本。   2. 保持文本的原始结构和格式。   3. 如果任何单词或短语不清晰,请在转录中用[unclear]表示。   仅提供转录,不要有任何额外的评论。"""   def encode_image_to_base64(image_path):       """将图像文件转换为base64编码的字符串。"""       with open(image_path, "rb") as image_file:           return base64.b64encode(image_file.read()).decode('utf-8')   def perform_ocr(image_path):       """使用Llama 3.2-Vision对给定图像执行OCR。"""       base64_image = encode_image_to_base64(image_path)       response = requests.post(           "http://localhost:8080/chat",  # 确保此URL与你的Ollama服务端点匹配           json={               "model": "llama3.2-vision",               "messages": [                   {                       "role": "user",                       "content": SYSTEM_PROMPT,                       "images": [base64_image],                   },               ],           }       )       if response.status_code == 200:           return response.json().get("message", {}).get("content", "")       else:           print("错误:", response.status_code, response.text)           return None   if __name__ == "__main__":       image_path = "path/to/your/image.jpg"  # 替换为你的图像路径       result = perform_ocr(image_path)       if result:           print("OCR识别结果:")           print(result)   

代码解释

  • Base64编码:encode_image_to_base64函数读取一个图像文件并将其转换为base64字符串,这是通过HTTP请求发送图像所需的。

  • 执行OCR:perform_ocr函数向本地Ollama服务发送POST请求,附带系统提示和base64编码的图像。

  • 处理响应:脚本检查请求是否成功,并从JSON响应中检索识别出的文本。

步骤5:运行OCR脚本

确保将脚本中的"path/to/your/image.jpg"替换成你想要识别的图片文件的实际路径。然后,在终端里运行以下命令:

python ollama_ocr.py   

应该看到类似于以下的输出:

OCR识别结果:   您的图像中识别出的文本将显示在这里。   

步骤6:优化结果

如果对OCR的结果不太满意,可以尝试调整脚本中的SYSTEM_PROMPT变量,使其更贴合你的具体需求,或者改善提供给Llama 3.2-Vision的指令的清晰度。

结论

使用Ollama和Llama 3.2-Vision构建OCR应用程序是直接且强大的,这得益于其多模态处理能力。按照上述步骤,你可以在电脑上创建一个功能性的OCR工具,利用先进的AI技术进行文本识别任务。

不妨多试试不同的图片和提示,充分挖掘这个模型的潜力。随着AI技术的持续进步,像Llama 3.2-Vision这样的工具在理解和处理视觉信息方面将变得更加高效和精准。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值