NO1. 概念与起源
行为决策理论(Behavioral Decision Theory,BDT) 是研究人类如何在不确定性和复杂情境中作出决策的理论体系。与传统的理性决策理论(如期望效用理论)不同,行为决策理论关注的是实际人类决策中的心理偏差和不理性行为。该理论起源于心理学、经济学和认知科学的交汇,尤其受到 赫伯特·西蒙(Herbert Simon) 和 丹尼尔·卡尼曼(Daniel Kahneman)、阿莫斯·特沃斯基(Amos Tversky) 等行为经济学家的影响。
核心思想:行为决策理论认为,人在决策过程中并非总是追求最优选择,许多时候是通过启发式方法、直觉和心理偏差来简化复杂的决策过程。这些非理性因素导致了决策结果偏离理性模型的预测。
理论假设:
-
人们的决策并非完全理性,常常受到认知偏差、情绪、社会压力等因素的影响。
-
人类的决策过程往往是有限理性的(bounded rationality),即受限于信息处理能力和时间限制。
-
在复杂环境下,个体更倾向于使用启发式策略,而非分析所有可能的选择。
NO2. 广泛应用的领域
经济学与金融学
-
应用:行为决策理论在经济学中,尤其在行为经济学和金融决策领域得到了广泛应用。人们在面临不确定性和风险时,往往表现出非理性行为,例如过度自信、损失厌恶等。
-
示例:投资者在股市中的决策往往受到情绪波动、羊群效应等心理因素的影响,而非基于冷静的风险收益分析。例如,“过度自信”可能导致投资者高估自己对市场的判断,从而做出不理性的投资决策。
心理学与认知科学
-
应用:行为决策理论广泛应用于认知心理学,用来研究个体如何处理信息、评估风险和选择行动。心理学家关注认知偏差、情绪状态和社会因素如何影响决策过程。
-
示例:例如,决策疲劳(decision fatigue)是指个体在做出一系列决策后,其决策质量会下降,表现为选择不理性或草率的决策。
公共政策与管理学
-
应用:政府和管理者使用行为决策理论来设计政策,促使个体做出更有利的决策,尤其是在健康、环保、教育等领域。
-
示例:为了促进人们健康饮食,政策制定者可能设计行为诱导措施(如“默认选项”)来改变人们的选择方式。例如,自动登记退休金计划利用默认选项让员工更容易参与计划,而不需要主动选择。
市场营销
-
应用:市场营销领域利用行为决策理论来理解消费者购买行为,尤其是在广告、定价策略和产品设计等方面。
-
示例:消费者常常在购买决策中受限于可得性启发式(availability heuristic)或锚定效应(anchoring effect)。例如,商家通过设置较高的原价并提供折扣来利用“锚定效应”,使消费者觉得折扣后的价格更具吸引力。
医疗决策
-
应用:在医疗决策中,行为决策理论被用来理解患者如何做出治疗选择,并帮助医生设计更有效的决策支持系统。
-
示例:患者在面对手术选择时,可能会因为损失厌恶(loss aversion)而过度关注手术风险,从而避免可能对其有益的治疗选项。
NO3. 核心概念解析
有限理性(Bounded Rationality)
-
定义:有限理性指的是人类在决策时受到认知能力、信息不完全和时间限制等因素的制约,无法做出完全理性的决策。赫伯特·西蒙首次提出这一概念,认为人类的决策是“足够好”而非“最优”。
-
示例:当你在一个复杂的购物场景中,需要做出多项选择时,你可能不考虑每一项商品的所有细节,而是根据已有的偏好和经验作出相对满意的决策。
启发式(Heuristics)
-
定义:启发式是人们在面对复杂问题时,为了节省认知资源和时间而采用的简化决策规则。启发式帮助人们快速做出决策,但也容易导致系统性的偏差。
-
示例:代表性启发式(representativeness heuristic) 是指人们根据某个对象与其典型特征的相似度来做出判断。例如,如果一个人看起来像典型的律师,人们可能会错误地判断他一定是律师,而忽视其他可能性。
损失厌恶(Loss Aversion)
-
定义:损失厌恶是指人们对损失的敏感度比对等值收益的敏感度要强,即人们更愿意避免损失,而不是追求等额的收益。
-
示例:投资者更可能卖出盈利较少的股票而持有亏损的股票,因为他们不愿意承认亏损,从而延迟决策。
锚定效应(Anchoring Effect)
-
定义:锚定效应指的是人们在做决策时,会过度依赖初始信息(即“锚”)作为参考点,影响后续的判断和决策。
-
示例:商家通过设置高价格作为“锚”,然后提供大幅折扣,消费者会认为折扣后的价格更加优惠。
框架效应(Framing Effect)
-
定义:框架效应指的是人们的决策受同一信息不同表述方式的影响。不同的表述方式可能会导致人们做出不同的决策。
-
示例:当面临治疗选择时,如果医生将成功率表述为“80%成功”而不是“20%失败”,患者的决策可能会受到框架效应的影响,选择“80%成功”的治疗选项。
前景理论(Prospect Theory)
-
定义:由丹尼尔·卡尼曼和阿莫斯·特沃斯基提出,前景理论描述了人们在面对不确定性时的决策行为,特别是对损失和收益的不同反应。人们在面对可能的损失时,表现出风险规避行为,而在面对可能的收益时,表现出风险寻求行为。
-
示例:如果给定一个选择,决策者可以选择100美元的确定收益,或有50%的机会获得200美元,但也有50%的机会获得0美元。根据前景理论,许多人会选择确定的100美元,因为他们更倾向于避免损失。
NO4. 行为决策理论在结构方程模型(SEM)中的应用
构建潜变量
-
在结构方程模型中,行为决策理论的核心概念(如认知偏差、情绪、风险偏好等)可以作为潜变量进行建模。这些潜变量通常通过多个观测指标来反映,例如风险偏好的测量可以包括个体在不同情境下的风险选择、损失厌恶程度等。
-
示例:在投资决策的SEM模型中,可以通过观测变量(如过去投资经验、投资金额、风险接受度)来构建潜变量“风险偏好”。
路径分析
-
直接路径:例如,损失厌恶可能直接影响投资者的风险决策。
-
间接路径:认知偏差或情绪状态可能通过影响个体的决策信息处理方式,间接影响其最终选择。
-
示例:在健康决策中,框架效应可能通过影响个体对健康风险的感知,间接影响其选择健康保险的意愿。
模型拟合
-
在SEM中,可以使用拟合指标(如CFI、TLI、RMSEA等)来检验行为决策理论中假设的路径关系,分析决策过程中的认知偏差、情绪、社会因素等的影响。
-
示例:拟合模型可能显示,框架效应和情绪偏差是健康决策中最重要的两个因素,它们共同影响个体是否选择参与健康筛查项目。
调节与中介效应
-
调节效应:例如,个体的个性特征或外部情境(如压力、时间限制等)可能会调节行为决策中的风险偏好或情绪反应。
-
中介效应:认知偏差(如锚定效应)可能在决策中的信息处理阶段起到中介作用,影响最终的决策结果。
-
示例:研究发现,社会支持可以调节风险偏好,低社会支持的人可能在面对财务决策时更加规避风险。
NO5. 应用示例:行为决策理论与消费者购买决策的关系分析
背景:研究消费者在面对促销广告时的决策行为,特别是损失厌恶、锚定效应和框架效应的影响。
模型设定:
-
损失厌恶:消费者对折扣优惠的反应。
-
锚定效应:商家的定价策略和原价显示。
-
框架效应:广告中的信息表述方式。
数据分析:
-
通过问卷调查和结构方程模型(SEM)分析路径系数:
-
损失厌恶对购买决策的正向影响:路径系数为0.35。
-
锚定效应对价格感知的负向影响:路径系数为-0.40。
-
框架效应对购买意图的间接影响:路径系数为0.30。
关键发现:
-
消费者对促销广告的反应受到损失厌恶和框架效应的显著影响。
-
锚定效应通过影响价格感知,间接影响购买决策。
干预措施:
-
在广告设计中,更加关注如何表述价格优惠,避免过度依赖价格锚定效应。
-
提供更清晰的价值信息,避免因损失厌恶而影响消费者的购买决策。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。