随着大语言模型(LLM)在多个领域的迅猛发展,越来越多的从业者和研究人员开始关注如何更高效地训练、评估以及优化这些复杂的模型。如果你也对 LLM 领域充满好奇,想要深入了解最新的趋势和技术,那么由资深的机器学习专家 mlabonne 更新并发布的全新 LLM Course 2025 Edition 绝不可错过!
跟随路线图学习从基础的 LLM 训练开始,逐步深入到数据处理、模型评估、量化优化等领域,学习过程中结合实际操作和案例研究,加深对理论的理解。
通过这份课程,你将能够获得包括训练、数据集、评估、量化技术及新兴趋势(如测试时计算扩展)在内的丰富内容。无论你是刚刚踏入 LLM 领域的新手,还是已经有一定经验的从业者,这个课程都将为你提供充足的学习资源。
2025 版本的 LLM 课程更新内容十分丰富,其中的亮点包括:
1. LLM 训练与优化
-
详细讲解了大语言模型的训练过程、常见挑战及解决方案,帮助你掌握模型训练的核心技术。
-
介绍了现代 LLM 优化方法,如何在不同的硬件环境下提高训练效率。
2. 数据集选择与构建
-
提供了与 LLM 训练相关的数据集推荐,包括常用的开放数据集以及如何根据具体任务需求定制数据集。
-
讲解了如何有效地处理和清洗数据,为 LLM 的训练准备高质量的输入。
3. 模型评估
-
课程将介绍一系列评估方法,帮助你理解如何测量 LLM 在特定任务上的表现。
-
强调了对大语言模型的评估不仅仅是准确率,更要注重模型的健壮性、鲁棒性以及可解释性。
4. 量化技术
-
通过引入量化技术,课程讲解了如何压缩模型,减小模型的存储与计算开销,从而提高模型的部署效率。
-
介绍了最新的量化方法和实践,帮助你在不损失精度的情况下,优化模型的资源占用。
5. 新趋势:测试时计算扩展
- 测试时计算扩展(Test-time Compute Scaling)是当前 LLM 领域的一项新兴趋势。课程深入探讨了如何在测试阶段对计算资源进行扩展,以应对更大规模的模型推理任务。
GitHub 链接:
https://github.com/mlabonne/llm-course
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。