论文 Contrastive Sampling Chains in Diffusion Models 的精炼解读。
一眼概览
该论文提出了一种 对比采样链(Contrastive Sampling Chains, CSC) 方法,通过对比损失和得分匹配相结合,优化扩散模型(DMs)的采样过程,从而 减少离散化误差,提高生成图像的质量,同时提升采样速度。
核心问题
扩散模型在使用数值求解方法进行采样时 不可避免地引入离散化误差,导致生成样本与真实数据分布之间存在偏差。现有方法尝试减少采样步骤以加速生成,但会导致图像质量下降。本研究的核心问题是:
-
如何减少离散化误差,在 不增加计算开销 的情况下,提高生成图像的质量?
-
如何在采样过程中 使模型生成的分布更接近真实数据分布?
技术亮点
-
提出对比采样链:使用对比损失构建采样链,通过正样本对(同一图像不同时间步的采样结果)和负样本对(不同图像的采样结果)优化模型,使不同时间步的生成样本更加一致,从而减少误差积累。
-
优化 KL 散度上界:理论分析表明,合适的对比损失和得分匹配组合可作为真实数据分布与模型分布 KL 散度的上界,从而有效减少离散化误差。
-
提升质量或加速采样:方法适用于各种 预训练扩散模型(无论是否使用快速采样算法),在 相同计算量下提升图像质量,或在 保持质量的同时减少采样步骤。
方法框架
论文的方法流程如下:
- 构建对比采样链:
-
在扩散模型的采样过程中,选择同一图像不同时间步的生成结果作为正样本对,不同图像的生成结果作为负样本对。
-
使用 MoCov2 预训练模型 提取 128 维特征并计算 InfoNCE 对比损失。
- 联合优化损失:
- 结合原始得分匹配损失(JSM)和对比损失(InfoNCE)。
- 采用 BPTT 进行优化:
- 采用 时间反向传播(BPTT) 传播梯度,优化整个采样链,而非单步优化,从而进一步减少全局误差。
实验结果速览
-
在 CIFAR-10 数据集上:
-
结合 EDM 预训练模型,在 相同采样步数(35 NFEs)下,FID 从 2.04 降至 1.88(质量提升)。
-
相同 FID(2.04)下,采样步数从 35 降至 25(计算量减少)。
-
适用于不同快速采样方法:
-
在 DPM-Solver、DEIS 等快速采样方法上应用本方法,可在相同计算量下降低 FID,或在相同 FID 下减少计算量。
实用价值与应用
该方法可用于 图像生成、视频生成、文本到图像生成 等任务,尤其适用于:
-
自动驾驶(减少传感器噪声,提高环境感知能力)
-
医学影像(降低数据采样误差,提高合成数据质量)
-
计算机视觉(提升图像生成质量,提高数据增强效果)
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。