深度求索(DeepSeek)这家公司可谓是一举成名,迅速在人工智能领域引起了广泛关注。不过,我在访问官网时发现,在 DeepSeek 的官网上,展示的模型是 V3:
然而,真正让 DeepSeek 声名大噪的,却是 R1 这一模型。根据发布记录,V3 要早于 R1 发布。R1 开源发布,难道是 V3 的精简版本?就像很多商业软件的做法。就这个问题,我问了一问 DeepSeek,得到如下答案:
后面一个答案是开启了深度思考模式下的答案。这种深度思考模式也是 DeepSeek 引起轰动的原因之一,它会将分析过程展现出来,而不像之前的 GPT,就如同一个黑盒,只给出一个答案。
那么,DeepSeek V3 和 R1 之间到底有什么区别?为此,我专门去搜了一下资料,进行了总结。由于水平有限,不一定正确,如有错漏,还望指正。
模型目标与设计理念
- DeepSeek R1:专注于高级推理任务
DeepSeek R1 主要针对需要复杂逻辑推理的任务进行优化,并利用强化学习技术来提升推理能力。该模型特别适用于涉及逻辑推理和问题求解的应用场景。
- DeepSeek V3:通用的自然语言处理模型
DeepSeek V3 采用混合专家(MoE)架构,主要面向自然语言处理(NLP)任务,旨在提供高效、可扩展的解决方案。其广泛的应用涵盖了客户服务、文本摘要、内容生成等多个领域。
模型架构解析
- DeepSeek V3:混合专家(MoE)架构
DeepSeek V3 采用混合专家(Mixture-of-Experts, MoE)架构,这一设计极大地提升了大型语言模型的计算效率和性能。其关键特点如下:
-
选择性激活专家:
DeepSeek V3 共有 6710 亿 个参数,但在推理时,每次仅激活其中 370 亿 个参数。这样可以大幅降低计算成本,同时保证推理质量。 -
多头潜在注意力(MLA):
通过对注意力键值进行压缩,减少内存占用,提高推理效率,而不会损害注意力机制的质量。 -
智能路由系统:
该模型拥有一个复杂的路由机制,可根据任务类型自动激活最适合的专家。例如: -
若输入是技术编码相关问题,模型会激活专精于编程语言的专家;
-
若输入是内容摘要请求,则会启用自然语言处理专家;
-
其他专家保持休眠,以节省计算资源。
-
动态负载均衡:
传统 MoE 模型通常依赖辅助损失来平衡负载,而 DeepSeek V3 采用动态偏差调整策略,确保不同专家的计算资源利用均衡,提高可扩展性和稳定性。 -
多令牌预测(MTP):
该机制允许模型在单次推理过程中预测多个词元(token),增强训练信号,提高在复杂任务上的表现。
2. DeepSeek R1 利用 V3 的架构优化推理
DeepSeek R1 充分利用了 V3 的架构,但在设计上针对推理任务进行了优化:
DeepSeek R1 依靠动态门控机制,使其在推理任务中表现出色。它可以根据查询内容选择性激活相关专家,从而在保证计算效率的同时,提供精准的逻辑推理能力。此外,该模型结合了负载均衡策略,确保专家间的合理分工,避免单个专家成为计算瓶颈。
结语
DeepSeek V3 和 R1 各自擅长不同的任务领域:
-
DeepSeek V3 作为一个通用 NLP 模型,适用于广泛的应用场景,能够高效处理各种文本生成、摘要和对话任务。
-
DeepSeek R1 则专注于逻辑推理和问题求解,借助强化学习优化推理能力,适用于推理密集型任务。
现在 DeepSeek 的 Chat 应用,应该是结合了两个模型的优势。在对话框中如果开启了深度思考模式,就会启用 R1模型。想必其它 AI 厂商很快就会跟进,也会加入深度思考模式。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。