Unsloth 现在可以在 Windows 上运行!🦥
无需 Linux 或 WSL,即可在 Windows 上本地微调 LLM。
注意现在不支持 Python 3.13,推荐使用 3.12、3.11 或 3.10。
1. 安装 NVIDIA 驱动程序
直接安装最新版本的 GPU 驱动程序。
https://www.nvidia.com/Download/index.aspx
2. 安装 Visual Studio C++
默认情况下,C++ 不会随 Visual Studio 一起安装,因此请确保选择所有 C++ 选项。还要选择适用于 Windows 10/11 SDK 的选项。
Visual Studio 社区版下载地址:
https://visualstudio.microsoft.com/vs/community/
在安装程序中,导航到各个组件并选择此处列出的所有选项:
-
.NET Framework 4.8 SDK
-
.NET Framework 4.7.2 目标包
-
C# 和 Visual Basic Roslyn 编译器
-
MSBuild
-
MSVC v143 - VS 2022 C++ x64/x86 构建工具
-
C++ 2022 可再发行更新
-
适用于 Windows 的 C++ CMake 工具
-
C++/CLI 支持 v143 构建工具(最新)
-
MSBuild 支持 LLVM (clang-cl) 工具集
-
适用于 Windows 的 C++ Clang 编译器 (19.1.1)
-
Windows 11 SDK (10.0.22621.0)
-
Windows 通用 CRT SDK
-
C++ 2022 可再发行 MSM
或者你可以按 Win + R 快捷键搜索 PowerShell,回车打开 PowerShell:
将下面的指令粘贴到 PowerShell 并运行(–installPath 填你的 Visual Studio 安装路径):
"C:\Program Files (x86)\Microsoft Visual Studio\Installer\vs_installer.exe" modify ^``--installPath "C:\Program Files\Microsoft Visual Studio\2022\Community" ^``--add Microsoft.Net.Component.4.8.SDK ^``--add Microsoft.Net.Component.4.7.2.TargetingPack ^``--add Microsoft.VisualStudio.Component.Roslyn.Compiler ^``--add Microsoft.Component.MSBuild ^``--add Microsoft.VisualStudio.Component.VC.Tools.x86.x64 ^``--add Microsoft.VisualStudio.Component.VC.Redist.14.Latest ^``--add Microsoft.VisualStudio.Component.VC.CMake.Project ^``--add Microsoft.VisualStudio.Component.VC.CLI.Support ^``--add Microsoft.VisualStudio.Component.VC.Llvm.Clang ^``--add Microsoft.VisualStudio.ComponentGroup.ClangCL ^``--add Microsoft.VisualStudio.Component.Windows11SDK.22621 ^``--add Microsoft.VisualStudio.Component.Windows10SDK.19041 ^``--add Microsoft.VisualStudio.Component.UniversalCRT.SDK ^``--add Microsoft.VisualStudio.Component.VC.Redist.MSM
3. 安装 Python 和 CUDA 工具包
按照说明安装 CUDA 工具包:
https://developer.nvidia.com/cuda-toolkit-archive
然后在此处安装 Miniconda:
https://www.anaconda.com/docs/getting-started/miniconda/install
4. 安装 PyTorch
安装 CUDA 驱动程序兼容的正确版本的 PyTorch:
https://pytorch.org/get-started/locally/
5. 安装 Unsloth
pip install "unsloth[windows] @ git+https://github.com/unslothai/unsloth.git"
如果你正在使用 GRPO 或计划使用 vLLM,目前 vLLM 不直接支持 Windows,而仅通过 WSL 或 Linux 支持。
注意
要在 Windows 上直接运行 Unsloth:
-
从下面的 Windows 分支安装 Triton 并按照此处的说明操作(请注意,Windows 分支需要 PyTorch >= 2.4 和 CUDA 12)
https://github.com/woct0rdho/triton-windows
-
在 SFTTrainer 中,设置 dataset_num_proc=1 以避免崩溃问题:
trainer = SFTTrainer(``dataset_num_proc=1,``...``)
如果你在安装过程中看到奇怪的错误:
-
安装 torch 和 triton。转到 https://pytorch.org 进行安装。例如 pip install torch torchvision torchaudio triton
-
确认 CUDA 是否安装正确。尝试 nvcc。如果失败,则需要安装 cudatoolkit 或 CUDA 驱动程序。
-
手动安装 xformers。你可以尝试安装 vllm 并查看 vllm 是否成功。使用 python -m xformers.info 检查 xformers 是否成功 转到 https://github.com/facebookresearch/xformers。另一个选择是为 Ampere GPU 安装 flash-attn。
-
仔细检查你的 Python、CUDA、CUDNN、torch、triton 和 xformers 版本是否相互兼容。PyTorch 兼容性矩阵可能会有用。
-
最后,安装 bitsandbytes 并使用 python -m bitsandbytes 检查。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。