1.卷宗智能解析
依托海量案件数据资源,采用多维信息提取模型,实现秒级生成可视化案情报告,通过动态图表自动标注作案手法、时空轨迹等核心要素,显著提升卷宗研读效率。
2.办案效率提升模块
预设模板化问题库覆盖常见办案场景,支持一键式卷宗筛查功能,通过智能标引技术自动定位关键段落,有效缩短卷宗审阅时长50%以上,确保案件信息提取准确率达98.6%。
3.证据链智能审查机制
运用多模态算法构建证据三维评估体系,通过自动化校验程序对证据材料进行完整性核验、逻辑关联度分析及法定要件审查,生成可视化证据力评估图谱。
4.案件要素可视化系统
设立三大智能分析维度——涉案人员拓扑网络生成器、案件进程时空坐标建模工具、法律程序合规性监测轴,辅助办案人员立体解构复杂案情,同步生成电子化审查备忘录。
5.案件细节智能交互平台
搭载自然语义处理引擎,支持全案由自由问答模式。办案人员输入任意案情关键词,系统即时调取关联证据链并标注材料页码,实现卷宗内容秒级定位,平均响应速度低于0.8秒。
具体场景如下:
场景化应用案例(金融诈骗案件)
案件背景
某市经侦部门侦办一起涉案金额超2.3亿元的集资诈骗案,卷宗包含3,600页银行流水、200份投资人笔录及40份电子合同,传统人工阅卷需耗时5-7天。
系统介入流程
- 秒级案情画像
- 上传卷宗后自动提取关键信息:
- 时间轴:标注平台成立、首笔资金异常、嫌疑人转移资产等18个关键节点(误差率<0.5%)
- 资金图谱:生成资金流向热力图,锁定3个境外空壳公司账户(传统审计需72小时)
- 证据关联:自动匹配32份笔录中关于"保本付息承诺"的重复表述,定位至合同第7条免责条款矛盾点
- 智能审讯辅助
- 办案人员输入问题:“证明主观故意的证据薄弱点?”
- 系统响应:
- 调取12份嫌疑人内部会议录音(自动转写文本标注"风险规避话术"关键词)
- 提示需补强3类证据:服务器操作日志、财务总监私人邮箱数据、关联人员行程轨迹交叉验证
- 证据链攻防推演
- 对40份电子合同启动"签名笔迹-盖章时序-修改痕迹"三重校验,发现:
- 7份合同存在PS修图噪点(置信度92.3%)
- 3份合同签署时间晚于资金到账日期(触发合规性警报)
实战价值量化
- 案件定性时间从7天压缩至9小时
- 退回补充侦查次数由平均4次降为1次
- 庭审举证环节证据异议率下降67%
缉毒案件实战案例
应用场景
某跨境贩毒团伙涉及6省9市,扣押手机87部(含30万条加密聊天记录)、车辆轨迹数据2TB,传统取证需20人工作组耗时2周。
系统功能落地
- 多源数据融合
- 自动解析暗语对话(如"茶叶200斤"关联历史涉毒案件暗号库)
- 时空碰撞分析:将11辆嫌疑车辆过车记录与快递柜监控进行坐标拟合,生成13条可疑交接路线
- 审讯策略生成
- 构建人物关系熵值模型,自动识别4名低层级成员作为突破口
- 推送针对性审讯话术:
- 成员A:重点突破其名下银行卡在毒品交易前一周的异常资金流入
- 成员B:利用其手机中删除的亲子照片触发心理防线
- 瑕疵证据预警
- 发现2处程序漏洞:
- 某扣押笔录未记载物品原始存放位置(可能影响证据同一性认定)
- 部分通话记录提取未附基站定位佐证(存在被质疑风险)
效能提升数据
- 电子数据筛查效率提升40倍(原需14天现压缩至8小时)
- 跨地区证据关联准确率从58%提升至89%
- 审查报告生成耗时从3天缩短至45分钟
基层派出所轻量化应用
日常警情处理场景
针对高频的醉酒闹事、小额盗窃等简易案件,民警使用移动端"3分钟快处模块":
- 语音输入案情关键词(如"超市+盗窃+惯犯")
- 系统自动推送:
- 类案处置模板(含笔录要点、取证清单、监控调取法律依据)
- 本地相似案件判决书摘要(刑期浮动区间预警)
- 生成标准化报告(自动填充60%格式内容)
成效对比
- 单警日均处理能力从4起提升至9起
- 案件文书瑕疵率从35%下降至6%
- 当事人投诉率降低42%
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。